Understanding Engineering Mathematics

(やまだぃちぅ) #1

  1. (i) ± 1


1
2

±


3
2

j −

1
2

±


3
2

j

(ii) − 21 ±


3 j

12.9 Reinforcement


1.Write the following in simplest form in terms of real numbers andj.

(i)


− 1 (ii)


9 (iii)


−9(iv)j^2

(v) −j^2 (vi)

1
j

(vii) (−j)^2

2.Solve the following equations, writing the answer inz=a+jbform:

(i) z^2 + 25 = 0 (ii) z^2 + 4 z+ 5 = 0

(iii) z^4 − 3 z^2 − 4 =0(iv)z^3 +z− 2 = 0

(v) z^3 + 1 =0(vi)z^2 + 2 jz+ 1 = 0

Using equations (i) – (v) verify the result that the equations with real coefficients have
real roots and/or complex roots occurring in conjugate pairs.
3.Express in the forma+jb:

(i) j^3 (ii) j^27 (iii) 3( 1 +j)− 2 ( 1 −j)

(iv) (− 2 j)^6 (v) j(j+ 2 ) (vi) j^3 /j

(vii) 2j(j− 1 )+j^3 ( 2 +j)

4.Find the real and imaginary parts of:

(i) ( 1 −j)( 1 +j) (ii) ( 3 − 4 j)( 1 +j) (iii) ( 4 + 3 j)^2

(iv) ( 4 + 3 j)^3

5.Write down the complex conjugates of:

(i) 5+ 3 j (ii)

1
3 − 4 j

(iii)

j
j+ 2

(iv)

j− 2
3 + 2 j

(v)

(
j− 2
3 + 2 j

) 4
(vi)

1
j( 2 − 5 j)^2

Where appropriate put both the original complex number and its conjugate intoa+jb
form and check your results.
Free download pdf