12.If|z 1 |=5, Argz 1 =π/3,|z 2 |=3, Argz 2 =π/4, find the Cartesian forms ofz 1 and
z 2 and the values of:
(i) |z 1 z 2 | (ii)
∣
∣
∣
∣
z 1
z 2
∣
∣
∣
∣ (iii) |z
2
1 |
(iv) Arg(z 1 z 2 ) (v) Arg
(
z 1
z 2
)
(vi) Argz ̄ 1
13.Show that multiplication byjrotates a complex number through
π
2
in the anticlock-
wise direction and division byjrotates it
π
2
in the clockwise direction.
14.Ifz 1 = 3
(π
6
)
, z 2 = 2
(π
18
)
, z 3 =^
(π
3
)
find the polar form of:
(i) z 1 z 2 (ii)
z 1
z 2
(iii) z 1 z 2 z 3
(iv)
z 2
z^23
(v)
z 2 z 3
z 1
(vi)
z^21 z 3
z 2
15.Evaluate the powers indicated by use of the polar form.
(i) ( 1 −j)^8 (ii) (
√
3 +j)^6 (iii) ( 2 + 2 j)^4
16.Plot the complex numbers
(i) 1−j (ii) 2j (iii)
√
3
2
+
1
2
j (iv) − 3 j
on the Argand diagram and put them in the formejθ.
17.Express the following numbers in the forma+jb:
(i) ejπ/^3 (ii) e−jπ/^6 (iii) e−(^1 +jπ)/^3 (iv)
ejπ/^3
j
(v)
e−jπ/^4
1 + 2 j
(vi)
e−jπ/^6
2 −j
18.Use the power series forexwithx=jθto findejθin the formA+jBwhereAand
Bare real power series inθ. Hence show that:
ejθ=cosθ+jsinθ
Use this result to prove that
(cosθ+jsinθ)n=cosnθ+jsinnθ
Hence evaluate
(
1
2
+j
√
3
2
) 43