Problem 13.12
Find the determinant and adjoint ofA=[− 123
011
− 102]and evaluateAAdjA|A|=∣
∣
∣
∣∣− 123
011
− 102∣
∣
∣
∣∣=−^1 (^2 )−^2 (^1 )+^3 (^1 )=− 1AdjA=
∣
∣∣
∣11
02∣
∣∣
∣ −∣
∣∣
∣01
− 12∣
∣∣
∣∣
∣∣
∣01
− 10∣
∣∣
∣−∣
∣
∣
∣23
02∣
∣
∣
∣∣
∣
∣
∣− 13
− 12∣
∣
∣
∣ −∣
∣
∣
∣− 12
− 10∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣23
11∣
∣
∣
∣ −∣
∣
∣
∣− 13
01∣
∣
∣
∣∣
∣
∣
∣− 12
01∣
∣
∣
∣
TNote, for example, that the element−
∣
∣
∣
∣− 12
− 10∣
∣
∣
∣in the 2, 3 position of the matrix about tobe transposed is indeed the cofactor of the elementa 23 inAand check the other elements
similarly.
=[ 2 − 11
− 41 − 2
− 11 − 1]T=[ 2 − 4 − 1
− 111
1 − 2 − 1]We t h e n fi n d
AAdjA=[− 123
011
− 102][ 2 − 4 − 1
− 111
1 − 2 − 1]=[− 100
0 − 10
00 − 1]=− 1[ 100
010
001]=− 1 I
=|A|IThis is an example of the general result
AAdjA
|A|=Iwhich we will return to below.