4.If
[
cosθ sinθ
−sinθ cosθ
]
=
√
3
2
1
2
−
1
2
√
3
2
determineθin the first quadrant, i.e. 0<θ< 90 °.
5.Using the following matrices evaluate every possible sum and product of pairs of the
matrices (repetitions such asA^2 allowed):
A=
[
2 − 1
30
]
B=
[ 3
− 1
4
]
C=[− 20 ]
D=
[ 01 − 1
203
− 1 − 32
]
E=
[ 34
− 12
03
]
F=
[
111
222
]
G=[ 210 ]
- A=
[ 2 − 1
30
− 11
]
B=
[ 32 − 1
01 2
11 1
]
C=
[ 42
31
0 − 1
]
D=
[
21 4
30 − 1
]
u=
[− 2
1
− 1
]
v=
[ 1
2
3
]
w=
[− 1
3
2
]
Find, where possible,
(i) 3A+B (ii) 4A+ 2 C (iii) 3D− 2 A
(iv) 2AD+ 3 B (v) 3u− 2 v+B (vi) 2u+ 3 v−w
(vii) u− 2 w+Bv
7.A,B,Care the matrices
A=
[
31
− 12
]
B=
[
2 − 10
312
]
C=
[
112
− 223
]
Verify thatA(B+C)=AB+AC.Isittruethat(B+C)A=BA+CA?
8.Evaluate
(i)
∣
∣
∣
∣
23
− 24
∣
∣
∣
∣ (ii)
∣
∣
∣
∣
∣
102
345
567
∣
∣
∣
∣
∣
(iii)
∣
∣
∣
∣
∣
10 6
3415
5621
∣
∣
∣
∣
∣
(iv)
∣
∣
∣
∣
∣
100
235
413
∣
∣
∣
∣
∣
(v)
∣
∣
∣
∣
∣
023
− 204
− 3 − 40
∣
∣
∣
∣
∣
(vi)
∣
∣
∣
∣
cosθ sinθ
−sinθ cosθ
∣
∣
∣
∣