Understanding Engineering Mathematics

(やまだぃちぅ) #1
(vii)a,ar,ar^2 ,ar^3 , (divergent if|r|>1, limit=aifr=1, convergent to 0 if
|r|<1 and oscillating ifr=− 1 )

(viii)−

x^3
3

,

x^5
5

,−

x^7
7

,

x^9
9

, (limit=0if|x|<1 and divergent otherwise)


  1. (i)


1
2 n

,( 0 ) (ii)

n− 1
n

,( 1 ) (iii)

1
n(n+ 1 )

,( 0 )

(iv)

2 n+ 1
2 n

,( 1 ) (v)

(− 1 )n
n!

,( 0 )

(vi)

nxn
(n+ 1 )(n+ 2 )

,(0if|x|= 1 ,divergent otherwise)

(vii) (− 1 )n

x^2 n+^1
2 n+ 1

,(0if|x|= 1 , divergent otherwise)

(viii)

nx
n+ 1

,(x)


  1. (i) 0 (ii) 0 (iii) 0 (iv) 1 (v) 0 (vi) |x|


(vii)

a
1 −r

if|r|<1, divergent otherwise

12.(i) 1 (ii) 0 (iii)





x
2




13.−1.55


14.(i) 17.08 (ii) 1.45



  1. (i) Sn= 2 −


(
1
2

)n− 1
,lim
n→∞
Sn= 2

(ii) Sn=

1
4

[
3 −

(

1
3

)n− 1 ]
,lim
n→∞
Sn=

3
4

(iii) Sn=n^2 ,limn→∞Sn=∞

(iv) No simple expression forSn, but in fact lim
n→∞
Sn=e

(v) No simple expression forSn, but in fact lim
n→∞
Sn=∞


  1. (i) 6


[
1 −

( 1
3

)n]
(C) (ii) 2n(n− 4 ) (D) (iii) 2n−1(D)

(iv)

[
1 −

(x
2

)n]/(
1 −

x
2

)
(C for|x|<2)


  1. (i) (− 1 )n (D) (ii) 1. 01 ( 1. 01 )n−^1 (D) (iii) (. 99 )n+^1 (C)


(iv)

1
( 49 +n)

(D) (v)

107 −n
n

(C) (vi)

(− 1 )n+^1
10 (n+ 3 )

(C)

(vii) n^2

(
3
4

)n
(C) (viii)

n
n+ 1

(D) (ix) (. 2 )n−^1 (C)
Free download pdf