(vii)a,ar,ar^2 ,ar^3 , (divergent if|r|>1, limit=aifr=1, convergent to 0 if
|r|<1 and oscillating ifr=− 1 )
(viii)−
x^3
3
,
x^5
5
,−
x^7
7
,
x^9
9
, (limit=0if|x|<1 and divergent otherwise)
- (i)
1
2 n
,( 0 ) (ii)
n− 1
n
,( 1 ) (iii)
1
n(n+ 1 )
,( 0 )
(iv)
2 n+ 1
2 n
,( 1 ) (v)
(− 1 )n
n!
,( 0 )
(vi)
nxn
(n+ 1 )(n+ 2 )
,(0if|x|= 1 ,divergent otherwise)
(vii) (− 1 )n
x^2 n+^1
2 n+ 1
,(0if|x|= 1 , divergent otherwise)
(viii)
nx
n+ 1
,(x)
- (i) 0 (ii) 0 (iii) 0 (iv) 1 (v) 0 (vi) |x|
(vii)
a
1 −r
if|r|<1, divergent otherwise
12.(i) 1 (ii) 0 (iii)
∣
∣
∣
x
2
∣
∣
∣
13.−1.55
14.(i) 17.08 (ii) 1.45
- (i) Sn= 2 −
(
1
2
)n− 1
,lim
n→∞
Sn= 2
(ii) Sn=
1
4
[
3 −
(
−
1
3
)n− 1 ]
,lim
n→∞
Sn=
3
4
(iii) Sn=n^2 ,limn→∞Sn=∞
(iv) No simple expression forSn, but in fact lim
n→∞
Sn=e
(v) No simple expression forSn, but in fact lim
n→∞
Sn=∞
- (i) 6
[
1 −
( 1
3
)n]
(C) (ii) 2n(n− 4 ) (D) (iii) 2n−1(D)
(iv)
[
1 −
(x
2
)n]/(
1 −
x
2
)
(C for|x|<2)
- (i) (− 1 )n (D) (ii) 1. 01 ( 1. 01 )n−^1 (D) (iii) (. 99 )n+^1 (C)
(iv)
1
( 49 +n)
(D) (v)
107 −n
n
(C) (vi)
(− 1 )n+^1
10 (n+ 3 )
(C)
(vii) n^2
(
3
4
)n
(C) (viii)
n
n+ 1
(D) (ix) (. 2 )n−^1 (C)