15.9 Answers to reinforcement exercises
- m=moe−λt
- (i)
x^2
2
+ 1 (ii) sinx (iii)
1
2
(x^21 )+lnx
(iv) 2x^2 + 2 x+1(v)
x^4
12
−
x^2
2
+
5
6
x
(vi) −cosx−
1
π
x+ 1 (vii)
1
1 − 3 x
(viii) sin−^1 x
- (i) −
2
x^2 +C
(ii) Cx (iii) sin−^1
(
x^2
2
+C
)
(iv) −ln|C−ex| (v)
1
2
( 10 −Ce−^2 x) (vi)
1
3
ln|C+
3
2
e^2 x|
(vii) 5y+cosy=x^2 +C (viii) Cxxe−x (ix)
x
2
( 1 −Cx)
(x) (y−x)^3 =Cx^2 y^2 (xi)
y− 2
y− 1
=Ce^3 x
- (i) Ce−x+
1
3
e^2 x (ii) ex+Ce−^2 x
(iii) x^2 − 2 +Cexp(−x^2 / 2 ) (iv) x+Cx^3
(v) C
(
x− 1
x+ 1
)
(vi)
x^3 +C
x− 1
(vii) Cx^2 −
x^2
2
e−^2 x
- (i)
1
2
(e^5 x−e^3 x) (ii) x^2 (lnx+ 2 )
(iii)
1
4
(
x^2 −
1
x^2
)
(iv) −
1
x^3
(cosx+ 1 )
- (i) Aex+Be−^2 x (ii) (Ax+B)e^2 x
(iii) e−^2 x(Acosx+Bsinx) (iv) Acos 2x+Bsin 2x
(v) Ae^3 x+Be−^3 x (vi) Acosx+Bsinx
7.(a) (i) Aex+Be−^2 x− 1 (ii) (Ax+B)e^2 x+
1
2
(iii) e−^2 x(Acosx+Bsinx)+
2
5
(iv) Acos 2x+Bsin 2x+
1
2
(v) Ae^3 x+Be−^3 x−
2
9
(vi) Acosx+Bsinx+ 2