15.9 Answers to reinforcement exercises
- m=moe−λt
- (i)
x^2
2+ 1 (ii) sinx (iii)1
2(x^21 )+lnx(iv) 2x^2 + 2 x+1(v)x^4
12−x^2
2+5
6x(vi) −cosx−1
πx+ 1 (vii)1
1 − 3 x
(viii) sin−^1 x- (i) −
2
x^2 +C(ii) Cx (iii) sin−^1(
x^2
2+C)(iv) −ln|C−ex| (v)1
2( 10 −Ce−^2 x) (vi)1
3ln|C+3
2e^2 x|(vii) 5y+cosy=x^2 +C (viii) Cxxe−x (ix)x
2( 1 −Cx)(x) (y−x)^3 =Cx^2 y^2 (xi)y− 2
y− 1=Ce^3 x- (i) Ce−x+
1
3e^2 x (ii) ex+Ce−^2 x(iii) x^2 − 2 +Cexp(−x^2 / 2 ) (iv) x+Cx^3(v) C(
x− 1
x+ 1)
(vi)x^3 +C
x− 1(vii) Cx^2 −x^2
2e−^2 x- (i)
1
2(e^5 x−e^3 x) (ii) x^2 (lnx+ 2 )(iii)1
4(
x^2 −1
x^2)
(iv) −1
x^3(cosx+ 1 )- (i) Aex+Be−^2 x (ii) (Ax+B)e^2 x
(iii) e−^2 x(Acosx+Bsinx) (iv) Acos 2x+Bsin 2x
(v) Ae^3 x+Be−^3 x (vi) Acosx+Bsinx7.(a) (i) Aex+Be−^2 x− 1 (ii) (Ax+B)e^2 x+
1
2
(iii) e−^2 x(Acosx+Bsinx)+2
5(iv) Acos 2x+Bsin 2x+1
2
(v) Ae^3 x+Be−^3 x−2
9(vi) Acosx+Bsinx+ 2