zx
(x,y)(x+dx,y)(x+dx, y+dy)0 ydz 2 = dydz 1 =∂∂xzdx∂z
∂xFigure 16.6The total derivative.
This is exact. However, if we neglectδxδythen we get anapproximation:δzyδx+xδyNotice that sincezx=yandzy=xthis may be writtenδzzxδx+zyδy(iii)δz=(x+δx)^2 +(y+δy)^2 −x^2 −y^2
= 2 xδx+ 2 yδy+(δx)^2 +(δy)^2
2 xδx+ 2 yδyif we neglect theδproducts. Again, notice that this isδzzxδx+zyδyThese examples illustrate the resultδzzxδx+zyδystated above.
Note that this is anapproximateformula betweenincrementsδx,δy,δz.Itisuseful
todefine differentialsdx,dy,dzwhich satisfy:
dz=∂z
∂xdx+∂z
∂ydy