z
x
(x,y)
(x+dx,y)
(x+dx, y+dy)
0 y
dz 2 = dy
dz 1 =∂∂xzdx
∂z
∂x
Figure 16.6The total derivative.
This is exact. However, if we neglectδxδythen we get anapproximation:
δzyδx+xδy
Notice that sincezx=yandzy=xthis may be written
δzzxδx+zyδy
(iii)δz=(x+δx)^2 +(y+δy)^2 −x^2 −y^2
= 2 xδx+ 2 yδy+(δx)^2 +(δy)^2
2 xδx+ 2 yδy
if we neglect theδproducts. Again, notice that this is
δzzxδx+zyδy
These examples illustrate the result
δzzxδx+zyδy
stated above.
Note that this is anapproximateformula betweenincrementsδx,δy,δz.Itisuseful
todefine differentialsdx,dy,dzwhich satisfy:
dz=
∂z
∂x
dx+
∂z
∂y
dy