Understanding Engineering Mathematics

(やまだぃちぅ) #1

17.11 Reinforcement


1.Find the Laplace transforms of


(i) 2+t+ 3 t^2 (ii) 2 sin 3t+e−^2 t

(iii) etcos( 2 t) (iv) sin^2 t

2.Write down the inverse Laplace transforms of


(i)

1
s^4

+

8
s^3

(ii)

s^2 + 5 s+ 7
s^4

(iii)

1
s− 4

(iv)

1
s+ 4

(v)

2
4 s− 3

(vi)

c
as+b

(vii)

s
s^2 + 9

(viii)

6
s^2 + 9

(ix)

5 s+ 4
s^2 + 9

(x)

as+ 6
s^2 +c^2

wherea,b,care constants.

3.Find the inverses of the following Laplace transforms:


(i)

s+ 3
s(s+ 2 )

(ii)

1
(s+ 1 )(s− 3 )

(iii)

s^2 + 2
(s^2 + 1 )(s+ 1 )

(iv)

1
s^2 (s− 4 )

(v)

1
(s− 1 )(s+ 2 )^2

(vi)

1
(s^2 + 4 )(s^2 + 9 )

4.Solve the following initial value problems using the Laplace transform, and the results
of Question 3.


(i) y′+ 2 y= 3 y( 0 )= 1

(ii) y′− 3 y=e−t y( 0 )= 0

(iii) y′+y=2sinty( 0 )= 2

(iv) y′+ 4 y=ty( 0 )= 0

(v) y′−y=te−^2 t y( 0 )= 0

(vi) y′′+ 9 y=3sin2ty( 0 )=y′( 0 )= 0
In each case check your result by solution by another means (e.g. undetermined
coefficients).
Free download pdf