2.3.5 Equalities and identities
➤➤
38 50
➤
A.Determine the real values ofA,B,C,Din the following identities:
(i) (s− 1 )(s+ 2 )≡As^2 +Bs+C
(ii) (x− 1 )^3 =Ax^3 + 2 Bx^2 − 3 Cx+D
(iii) (x−A)(x+B)≡x^2 − 4
(iv) (x+ 2 )(x− 3 )( 2 x− 1 )≡A(x− 1 )^2 +Bx+Cx^3 −Dx^2
(v) A(x− 1 )+B(x+ 2 )≡x− 3
(vi) (x+A)^2 +B^2 ≡x^2 − 2 x+ 5
B.Given that
A(x−a)+B(x−b)≡ax+b
determine expressions forA,Bin terms ofa,bby two different methods.
2.3.6 Roots and factors of a polynomial
➤➤
39 52
➤
Use the factor theorem to factorise the following polynomials:
(i) u^3 −u^2 − 4 u+ 4 (ii) x^3 + 4 x^2 +x− 6
(iii) t^4 −t^3 − 7 t^2 +t+6(iv)x^3 −x^2 −x+ 1
(v) x^3 + 3 x^2 − 10 x− 24
2.3.7 Rational functions
➤➤
39 54
➤
A.Identify the rational functions and state (a) the denominator, (b) the numerator.
(i)
x+ 1
x− 1
(ii)
x+
√
2
x^2 − 1
(iii)
√
x+ 3
x^3 − 2 x+ 1
(iv)
x^3 + 2 x− 1
x^4 − 2 x+ 3
(v)
2 x^4 − 1
x^4 + 1
B.For what values ofxdoes
1
x− 1
−
1
x− 1
exist?
2.3.8 Algebra of rational functions
➤➤
39 56
➤
A.Put the following over a common denominator and check your results withx=0and
one other appropriate value.
(i)
2
x+ 2
−
3
x− 1
(ii)
1
x+ 3
−
2
x− 4
(iii)
2
x+ 3
−
3
x− 2
(iv)
2
x− 2
+
3
x− 3
(v)
1
x− 1
+
1
x− 2
+
1
x− 3
(vi)
3
x+ 2
−
3
x+ 3
−
4
x− 1