Understanding Engineering Mathematics

(やまだぃちぅ) #1

C.Reduce to simplest form


(i)

a^2 b^3 c^2
abc

(ii)

(a^2 )^3 c^12
ab^2

(iii)

ba^12 b^7 c^4
(a^2 b^4 c^6 )^1 /^2

(iv)

(a^3 )^4 c^12
b−^3 c^10 a−^1 b^2

D.Simplify the following expressions


(i) b^2 a^2 b^3 ab^3 (ii)

t^3 xy
x^2 yt

(iii)

(x^2 )^4 y^7 /^2
(x^6 )^1 /^3

y

2.3.13 The binomial theorem


➤➤
40 71


A.Write down the coefficients ofx^4 in the following expansions


(i) ( 1 +x)^7 (ii) ( 1 + 3 x)^6 (iii) ( 1 − 2 x)^5

(iv) ( 3 − 2 x)^8 (v) ( 3 x+ 2 y)^6

B. Expand by the binomial theorem


(i) ( 1 − 2 x)^7 (ii) (a+b)^6 (iii) ( 2 x+ 3 y)^5

(iv) ( 2 − 3 x)^6 (v) ( 3 s− 2 t)^5

C.Evaluate, without using a calculator:


(i) ( 1 +


2 )^3 +( 1 −


2 )^3 (ii) ( 2 +


3 )^4 +( 2 −


3 )^4

D.Use the binomial theorem to evaluate to three decimal places:


(i) ( 1. 01 )^10 (ii) ( 0. 998 )^8

Hint: write 1. 01 = 1 + 0 .01 and 0. 998 = 1 − 0 .002.


2.4 Applications


1.The time behaviour of a source free resistor (R)-inductor (L)-capacitor (C) series circuit
can be described by a particulardifferential equation:


d^2 V
dt^2

+

R
L

dV
dt

+

1
LC

V= 0
Free download pdf