2.3.8 Algebra of rational functions
A. (i)
−x− 8
(x+ 2 )(x− 1 )
(ii)
−x− 10
(x+ 3 )(x− 4 )
(iii)
−x− 13
(x+ 3 )(x− 2 )
(iv)
5 x− 12
(x− 2 )(x− 3 )
(v)
3 x^2 − 12 x+ 11
(x− 1 )(x− 2 )(x− 3 )
(vi)
− 4 x^2 − 17 x− 27
(x+ 2 )(x+ 3 )(x− 1 )
(vii)
2 x+ 1
x^2 − 1
(viii)
x^3 + 3 x^2 + 3 x
(x+ 1 )(x+ 2 )
(ix)
5 x^2 + 8
(x^2 + 1 )(x^2 + 2 )
(x)
2 x^3 +x^2 − 6 x+ 9
(x− 1 )(x+ 2 )
B. (i)
5 x− 14
(x− 1 )(x+ 2 )
(ii)
2
x− 4
(iii)
4 x^2 − 14 x+ 13
(x− 1 )(x− 2 )^2
(iv)
− 2 x^2 − 5 x− 2
(x^2 + 1 )(x− 2 )
(v)
x+ 1
x− 2
2.3.9 Division and the remainder theorem
A. (i) 1, x = 0 (ii) 1+
1
(x− 1 )^2
x = 1
(iii) x^3 +x^2 + 3 x+ 13 +
38
x− 3
x = 3
(iv) x^2 −x+ 1 x =−1(v)2−
3 (x− 2 )
x^2 − 1
x =± 1
(vi) x^2 −y^2
B. (i) (a) 4 (b)− 29 (c)− 1
(ii) (a) 0 (b)− 45 (c)− 1
(iii) (a) 0 (b) 28 (c) 0
(iv) (a) 0 (b)− 199 (c) 1
2.3.10 Partial fractions
A.For answers see Q2.3.8A, B.
B. (i)
3
5 (x+ 2 )
+
2
5 (x− 3 )
(ii)
2
x− 1
−
2
x+ 1
(iii)
4
3 (x− 3 )
−
1
3 x
(iv)
1
(x− 1 )^2
−
1
x− 1
−
3
x+ 2
(v)
3
2 (x+ 1 )
−
3
2
(x− 1 )
x^2 + 1
(vi)
1
4 (x− 2 )
+
3
4 (x− 2 )^2
+
1
4
(x+ 5 )
x^2 + 4
(vii) −
1
6 (x− 1 )
−
1
14 (x+ 3 )
+
5
28 (x− 4 )