Understanding Engineering Mathematics

(やまだぃちぅ) #1

2.3.8 Algebra of rational functions


A. (i)


−x− 8
(x+ 2 )(x− 1 )

(ii)

−x− 10
(x+ 3 )(x− 4 )

(iii)

−x− 13
(x+ 3 )(x− 2 )

(iv)

5 x− 12
(x− 2 )(x− 3 )

(v)

3 x^2 − 12 x+ 11
(x− 1 )(x− 2 )(x− 3 )

(vi)

− 4 x^2 − 17 x− 27
(x+ 2 )(x+ 3 )(x− 1 )

(vii)

2 x+ 1
x^2 − 1

(viii)

x^3 + 3 x^2 + 3 x
(x+ 1 )(x+ 2 )

(ix)

5 x^2 + 8
(x^2 + 1 )(x^2 + 2 )

(x)

2 x^3 +x^2 − 6 x+ 9
(x− 1 )(x+ 2 )

B. (i)


5 x− 14
(x− 1 )(x+ 2 )

(ii)

2
x− 4

(iii)

4 x^2 − 14 x+ 13
(x− 1 )(x− 2 )^2

(iv)

− 2 x^2 − 5 x− 2
(x^2 + 1 )(x− 2 )

(v)

x+ 1
x− 2

2.3.9 Division and the remainder theorem


A. (i) 1, x = 0 (ii) 1+


1
(x− 1 )^2

x   = 1

(iii) x^3 +x^2 + 3 x+ 13 +

38
x− 3

x   = 3

(iv) x^2 −x+ 1 x    =−1(v)2−

3 (x− 2 )
x^2 − 1

x   =± 1

(vi) x^2 −y^2

B. (i) (a) 4 (b)− 29 (c)− 1


(ii) (a) 0 (b)− 45 (c)− 1
(iii) (a) 0 (b) 28 (c) 0
(iv) (a) 0 (b)− 199 (c) 1

2.3.10 Partial fractions


A.For answers see Q2.3.8A, B.


B. (i)


3
5 (x+ 2 )

+

2
5 (x− 3 )

(ii)

2
x− 1


2
x+ 1

(iii)

4
3 (x− 3 )


1
3 x

(iv)

1
(x− 1 )^2


1
x− 1


3
x+ 2

(v)

3
2 (x+ 1 )


3
2

(x− 1 )
x^2 + 1

(vi)

1
4 (x− 2 )

+

3
4 (x− 2 )^2

+

1
4

(x+ 5 )
x^2 + 4

(vii) −

1
6 (x− 1 )


1
14 (x+ 3 )

+

5
28 (x− 4 )
Free download pdf