290 Answers to Exercises and Solutions to Problems8.5. First solution. Let U, v, w be the zeros of x3 + ax2 + 11x + 6 and u,
v, % the zeros of z3 + bx2 + 14x + 8. Thenu+v+w=--a uv+uw+vw=11 uwv=-6
u+v+z=-b uv + U% + V% = 14 uvz = -8* w(u + v) = 11- uv z(u + v) = 14 - uv 6% = 8w
a 6(14 - uv) = 8(11- uv) + uv = 2
* w=-3, %=-4*u+v=-3.
Hence a = 6, b = 7.
Second solution. The common zeros of two polynomials are zeros of their
difference (Q - b)x2 - 3x - 2. Now6 + 11x + .x2 + x3 = (2 + 3x + (b - a)x2)(3 + x)+ (4a - 3b - 3)x2 + (1 + a - b)x3.
Since 2+3x+(b-a)x2 divides 6+11x+ax2+x3, it follows that 4a-3b-3 =
l+a-b=O,ore=6,b=7.
8.6. Since the r-ai are distinct nonzero integers and at most two can have
the same absolute value, their absolute values arranged in increasing order
are respectively at least equal to 1, 1, 2, 2, 3, 3,... , n, n. HenceHowever, since ll(r - oi) = (-1)“(n!)2, equality actually occurs. Thus,
the numbers r - ai are +l, -1, +2, -2,... ,+n, -n in some order and
r-al+r-a2+.. .+r-az,=l-1+2-2+...+n-n=O.Theresult
follows.
8.7. Let t3 - mt2 - mt - (m2 + 1) have an integer zero t. Then t must be
such that the quadratic equationm2 + (t2 + t)m - (t3 - 1) = 0has an integer solution m. The discriminant of this quadratic ist4 + 6t3 + t2 - 4 = (t2 + 3t - 4)2 + (24t - 20) = (t + 4)2(t - 1)2 + 4(6t - 5).If t 2 1, then
(t2 + 3t - 4)2 + (24t - 20) > (P + 3t - 3)2,so that t 5 8. If t 5 -5, then(t2 + 3t - 4)2 + (24t - 20) 5 (P + 3t - 5)2,