6.3. STATIC CHARACTERISTICS: CURRENT - VOLTAGE RELATION 257
diffusion coefficientsDbandDein the base and emitter, respectively,
IEn=InEB = eADbdδnb(x)
dxb∣
∣∣
∣
xb=0(6.3.6)
IEp=IpBE = −eADedδp(x)
dxe∣∣
∣∣
xe=0(6.3.7)
These are the current components shown in figure 6.6 and represent the emitter current compo-
nents II, III, and IV. Assuming an exponentially decaying hole density into the emitter, we have,
as in the case of ap-ndiode ,
IEp=−A(
eDepeo
Le)[
exp(
eVBE
kBT)
− 1
]
(6.3.8)
Using the electron distribution derived in the base, we have for the electron part of the emitter
current
IEn = −eADbnbo
Lbsinh(
Wbn
Lb)
{
cosh(
Wbn−xb
Lb)[
exp(
eVBE
kBT)
− 1
]
−cosh(
xb
Lb)[
exp(
−
eVCB
kBT)
− 1
]}∣∣
∣
∣
at xb=0= −eADbnbo
Lbsinh(
Wbn
Lb)
{
cosh(
Wbn
Lb)[
exp(
eVBE
kBT)
− 1
]
−
[
exp(
−
eVCB
kBT)
− 1
]}
(6.3.9)
For high emitter efficiency we wantIEnto be much larger thanIEp. This occurs if the emitter
doping is much larger than the base doping. The total emitter current becomes
IE = IEn+IEp=−{
eADbnbo
Lbcoth(
Wbn
Lb)
+
eADepeo
Le}
[
exp(
eVBE
kBT)
− 1
]
+
eADbnbo
Lbsinh(
Wbn
Lb)
[
exp(
−
eVCB
kBT)
− 1
]
(6.3.10)
The collector current components can be obtained by using the same approach. Thus we have
IBCn = eADbdδnb(xb)
dxb∣∣
∣∣
xb=Wbn(6.3.11)
IBCp = eADpdδp(xc)
dxc∣∣
∣
∣
xc=0