116 Classical Optimization Techniques
Determine whether the following search direction is usable, feasible, or both at the design
vectorX={ 5
1}
:S={
0
1}
, S={
− 1
1}
, S={
1
0}
, S={
− 1
2}2.67 Consider the following problem:Minimizef=x^31 − 6 x 12 + 11 x 1 +x 3subject to
x^21 +x^22 −x 32 ≤ 0
4 −x^21 −x^22 −x 32 ≤ 0
xi≥ 0 , i= 1 , 2 , 3 , x 3 ≤ 5Determine whether the following vector represents an optimum solution:X=
0
√
2
√
2
2.68 Minimizef=x 12 + 2 x 22 + 3 x 32subject to the constraints
g 1 =x 1 −x 2 − 2 x 3 ≤ 12
g 2 =x 1 + 2 x 2 − 3 x 3 ≤ 8using Kuhn–Tucker conditions.
2.69 Minimizef (x 1 , x 2 )=(x 1 − 1 )^2 +(x 2 − 5 )^2subject to
−x^21 +x 2 ≤ 4
−(x 1 − 2 )^2 +x 2 ≤ 3by (a) the graphical method and (b) Kuhn–Tucker conditions.
2.70 Maximizef= 8 x 1 + 4 x 2 +x 1 x 2 −x 12 −x^22subject to
2 x 1 + 3 x 2 ≤ 24
− 5 x 1 + 12 x 2 ≤ 24
x 2 ≤ 5by applying Kuhn–Tucker conditions.