Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
4.5 Sensitivity or Postoptimality Analysis 217

SinceA 1 is changed, we have


c 1 =c 1 −πTA 1 = − 45 −(−^223 −^23 )

{

6

10

}

=^173

Asc 1 is positive, the original optimum solution remains optimum for the new problem
also.


Example 4.10 Find the effect of changingA 1 from


{ 7

3

}

to

{ 5

6

}

in Example 4.5.

SOLUTION The relative cost coefficient of the nonbasic variablex 1 for the newA 1
is given by


c 1 =c 1 −πTA 1 = − 45 −(−^223 −^23 )

{

5

6

}

=−^133

Sincec 1 is negative,x 1 can be brought into the basis to reduce the objective function
further.For this we start with the original optimum tableau with the new values ofA 1
given by


A 1 =B−^1 A 1 =

[ 4

15 −

1
15
− 1501 752

] {

5

6

}

=

[ 20

15 −

6
15
− 301 + 254

]

=

{ 14

15
19
150

}

Variables

Basic variables x 1 x 2 x 3 x 4 x 5 x 6 −f bi (bi/ais)


x 3 1415 0 1 73 154 − 151 0 8003 400014
x 2 15019 1 0 − 301 − 1501 752 0 403 200019 ←
Pivot element
−f −^1330050322323128 , 3000

x 3 0 −^1401914919196 − 195 0 3 , 19200
x 1 1 15019 0 − 195 − 191 194 0 2 , 19000
−f 0 65019 0 29519 13519 3019 1 18619 ,^000

Since allcjare nonnegative, the present tableau gives the new optimum solution as


x 1 = 0002 / 19 , x 3 = 2003 / 19 (basic variables)
x 2 =x 4 =x 5 =x 6 = 0 (nonbasic variables)

fmin= −

186 , 000

19

and maximum profit=

$186, 000

19
Free download pdf