230 Linear Programming II: Additional Topics and Extensions
reduces to a LP problem. The solution of the quadratic programming problem stated
in Eqs. (4.72) to (4.74) can be obtained by using the Lagrange multiplier technique.
By introducing the slack variablessi^2 , i = 1 , 2 ,... , m, in Eqs. (4.73) and the surplus
variablestj^2 , j = 1 , 2 ,... , n, in Eqs. (4.74), the quadratic programming problem can
be written asMinimizef (X)=CTX+^12 XTDX (4.72)subject to the equality constraintsATiX+si^2 =bi, i= 1 , 2 ,... , m (4.75)−xj+tj^2 = 0 , j= 1 , 2 ,... , n (4.76)whereAi=
ai 1
ai 2
..
.
ain
The Lagrange function can be written asL(X,S,T,λ,θ)=CTX+^12 XTDX+∑m
i= 1λi(ATiX+si^2 −bi)+
∑nj= 1θj(−xj+tj^2 ) (4.77)The necessary conditions for the stationariness ofLgive∂L
∂xj=cj+∑ni= 1dijxi+∑mi= 1λiaij−θj= 0 , j= 1 , 2 ,... , n (4.78)∂L
∂si= 2 λisi= 0 , i= 1 , 2 ,... , m (4.79)∂L
∂tj= 2 θjtj= 0 , j= 1 , 2 ,... , n (4.80)∂L
∂λi=ATiX+si^2 −bi= 0 , i= 1 , 2 ,... , m (4.81)∂L
∂θj= −xj+tj^2 = 0 , j= 1 , 2 ,... , n (4.82)By defining a set of new variablesYiasYi=si^2 ≥ 0 , i= 1 , 2 ,... , m (4.83)Equations (4.81) can be written asATiX−bi= −si^2 = −Yi, i= 1 , 2 ,... , m (4.84)