232 Linear Programming II: Additional Topics and Extensions
phase I. This procedure involves the introduction ofnnonnegative artificial variables
ziinto the Eqs. (4.89) so that
cj−θj+
∑n
i= 1
xidij+
∑m
i= 1
λiaij+zj= 0 , j= 1 , 2 ,... , n (4.97)
Then we minimize
F=
∑n
j= 1
zj (4.98)
subject to the constraints
cj−θj+
∑n
i= 1
xidij+
∑m
i= 1
λiaij+zj= 0 , j= 1 , 2 ,... , n
ATiX+Yi=bi, i= 1 , 2 ,... , m
X≥ 0 , Y≥ 0 , λ≥ 0 , θ≥ 0
While solving this problem, we have to take care of the additional conditions
λiYi= 0 , j= 1 , 2 ,... , m
θjxj= 0 , j= 1 , 2 ,... , n
(4.99)
Thus when deciding whether to introduceYiinto the basic solution, we first have to
ensure that eitherλiis not in the solution orλiwill be removed whenYienters the
basis. Similar care has to be taken regarding the variablesθjandxj. These additional
checks are not very difficult to make during the solution procedure.
Example 4.14
Minimizef= − 4 x 1 +x 12 − 2 x 1 x 2 + 2 x 22
subject to
2 x 1 +x 2 ≤ 6
x 1 − 4 x 2 ≤ 0
x 1 ≥ 0 , x 2 ≥ 0
SOLUTION By introducing the slack variablesY 1 =s 12 andY 2 =s 22 and the surplus
variablesθ 1 =t 12 andθ 2 =t 22 , the problem can be stated as follows:
Minimizef=(−4 0)
{
x 1
x 2
}
+
1
2
(x 1 x 2 )
[
2 − 2
− 2 4
] {
x 1
x 2
}
subjectto
[
2 1
1 − 4
] {
x 1
x 2
}
+
{
Y 1
Y 2
}
=
{
6
0
}
−x 1 +θ 1 = 0
−x 2 +θ 2 = 0