272 Nonlinear Programming I: One-Dimensional Minimization Methods
Table 5.3 Final Intervals of Uncertainty
Method Formula n= 5 n= 10
Exhaustive search Ln=
2
n+ 1
L 0 0. 33333 L 0 0. 18182 L 0
Dichotomous search
(δ= 0.01 and
n=even)
Ln=
L 0
2 n/^2
+δ
(
1 −
1
2 n/^2
)
1
4 L^0 +^0 .0075 with
n= 4 ,^18 L 0 + 0. 00875
withn= 6
0. 03125 L 0 + 0. 0096875
Interval halving (n≥ 3
and odd)
Ln=(^12 )(n−^1 )/^2 L 0 0. 25 L 0 0. 0625 L 0 withn= 9 ,
0. 03125 L 0 with
n= 11
Fibonacci Ln=
1
Fn
L 0 0. 125 L 0 0. 01124 L 0
Golden section Ln=(0.618)n−^1 L 0 0. 1459 L 0 0. 01315 L 0
Table 5.4 Number of Experiments for a Specified Accuracy
Method Error:
1
2
Ln
L 0
≤ 0. 1 Error:
1
2
Ln
L 0
≤ 0. 01
Exhaustive search n≥ 9 n≥ 99
Dichotomous search (δ= 0. 01 , L 0 =1) n≥ 6 n≥ 14
Interval halving (n≥3 and odd) n≥ 7 n≥ 13
Fibonacci n≥ 4 n≥ 9
Golden section n≥ 5 n≥ 10
is to findλ∗, the smallest nonnegative value ofλ,for which the function
f (λ)=f (X+λS) (5.27)
attains a local minimum. Hence if the original functionf(X) is expressible as an explicit
function ofxi(i = 1 , 2 ,... , n), we can readily write the expression forf (λ)=f(X
+λS) for any specified vectorS, set
df
dλ
(λ)= 0 (5.28)
and solve Eq. (5.28) to findλ∗ in terms ofXandS. However, in many practical
problems, the functionf (λ)cannot be expressed explicitly in terms ofλ(as shown in
Example 5.1). In such cases the interpolation methods can be used to find the value
ofλ∗.
Example 5.9 Derive the one-dimensional minimization problem for the following
case:
Minimizef (X)=(x^21 −x 2 )^2 +( 1 −x 1 )^2 (E 1 )
from the starting pointX 1 =
{− 2
− 2
}
along the search directionS=
{ 1 0. 0
0. 25