Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

334 Nonlinear Programming II: Unconstrained Optimization Techniques


Iteration 2

Step 1: Asf (X 1 ) = 80. 0 , f (X 2 ) = 56 .75, andf (X 3 ) = 96 .0,

Xh=X 3 =

{

4. 0

5. 0

}

and Xl=X 2 =

{

2. 0

5. 5

}

Step 2:The centroid is

X 0 =

1

2

(X 1 +X 2 )=

1

2

{

4. 0 + 2. 0

4. 0 + 5. 5

}

=

{

3. 0

4. 75

}

f (X 0 ) = 67. 31

Step 3:

Xr= 2 X 0 −Xh=

{

6. 0

9. 5

}


{

4. 0

5. 0

}

=

{

2. 0

4. 5

}

f(Xr)= 2. 0 − 4. 5 + 2 ( 4. 0 )+ 2 ( 9. 0 )+ 20. 25 = 43. 75

Step 4: Asf (Xr) < f (Xl) we find, Xeas

Xe= 2 Xr−X 0 =

{

4. 0

9. 0

}


{

3. 0

4. 75

}

=

{

1. 0

4. 25

}

f (Xe)= 1. 0 − 4. 25 + 2 ( 1. 0 )+ 2 ( 4. 25 )+ 18. 0625 = 25. 3125

Step 5: Asf (Xe) < f (Xl) we replace, XhbyXeand obtain the new vertices as

X 1 =

{

4. 0

4. 0

}

, X 2 =

{

2. 0

5. 5

}

, and X 3 =

{

1. 0

4. 25

}

Step 6: For convergence, we computeQas

Q=

[

( 80. 0 − 67. 31 )^2 + 6 ( 5. 75 − 67. 31 )^2 + 5 ( 2. 3125 − 67. 31 )^2

3

] 1 / 2

= 62. 1

SinceQ>ε, we go to the next iteration.
This procedure can be continued until the specified convergence is satisfied. When
the convergence is satisfied, the centroidX 0 of the latest simplex can be taken as the
optimum point.
Free download pdf