344 Nonlinear Programming II: Unconstrained Optimization Techniques
SOLUTION
Iteration 1
∇f =
{
∂f/∂x 1
∂f/∂x 2
}
=
{
1 + 4 x 1 + 2 x 2
− 1 + 2 x 1 + 2 x 2
}
∇f 1 = ∇ f(X 1 )=
{
1
− 1
}
The search direction is taken asS 1 = −∇f 1 =
{− 1
1
}
.To find the optimal step length
λ∗ 1 alongS 1 , we minimizef(X 1 +λ 1 S 1 ) ith respect tow λ 1. Here
f(X 1 +λ 1 S 1 ) =f(−λ 1 ,+λ 1 )=λ^21 − 2 λ 1
df
dλ 1
= 0 at λ∗ 1 = 1
Therefore,
X 2 =X 1 +λ∗ 1 S 1 =
{
0
0
}
+ 1
{
− 1
1
}
=
{
− 1
1
}
Iteration 2
Since∇f 2 = ∇ f(X 2 )=
{− 1
− 1
}
,Eq. (6.81) gives the next search direction as
S 2 = −∇f 2 +
|∇f 2 |^2
|∇f 1 |^2
S 1
where
|∇f 1 |^2 = 2 and |∇f 2 |^2 = 2
Therefore,
S 2 = −
{
− 1
− 1
}
+
(
2
2
){
− 1
1
}
=
{
0
+ 2
}
To findλ∗ 2 , we minimize
f(X 2 +λ 2 S 2 ) =f(− 1 , 1 + 2 λ 2 )
=− 1 −( 1 + 2 λ 2 )+ 2 − 2 ( 1 + 2 λ 2 )+( 1 + 2 λ 2 )^2
= 4 λ^22 − 2 λ 2 − 1
with respect toλ 2. As df/dλ 2 = 8 λ 2 − 2 = 0 atλ∗ 2 =^14 , we obtain
X 3 =X 2 +λ∗ 2 S 2 =