346 Nonlinear Programming II: Unconstrained Optimization Techniques
Example 6.10 Show that the Newton’s method finds the minimum of a quadratic
function in one iteration.SOLUTION Let the quadratic function be given byf (X)=^12 XT[A]X+BTX+CThe minimum off (X)is given by∇f=[A]X+B= 0
or
X∗= −[A]−^1 BTheiterative step of Eq. (6.86) gives
Xi+ 1 =Xi−[A]−^1 ([A]Xi+B) (E 1 )whereXiis the starting point for theith iteration. Thus Eq. (E 1 ) gives the exact solutionXi+ 1 =X∗= −[A]−^1 BFigure6.16 illustrates this process.Example 6.11 Minimizef (x 1 , x 2 )=x 1 −x 2 + 2 x^21 + 2 x 1 x 2 +x 22 by taking the start-
ing point asX 1 ={ 0
0}
.
SOLUTION To findX 2 according to Eq. (6.86), we require [J 1 ]−^1 , where[J 1 ]=
∂^2 f
∂x^21∂^2 f
∂x 1 ∂x 2
∂^2 f
∂x 2 ∂x 1∂^2 f
∂x 22
X 1=
[
4 2
2 2
]
Figure 6.16 Minimization of a quadratic function in one step.