Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
6.14 Davidon–Fletcher–Powell Method 359

SOLUTION


Iteration 1 (i= 1 )


Here


∇f 1 = ∇ f(X 1 )=

{

1 + 4 x 1 + 2 x 2
− 1 + 2 x 1 + 2 x 2

}∣∣



( 0 , 0 )

=

{

1

− 1

}

and hence


S 1 = −[B 1 ]∇f 1 = −

[

1 0

0 1

]{

1

− 1

}

=

{

− 1

1

}

To find the minimizing step lengthλ∗ 1 alongS 1 , we minimize


f(X 1 +λ 1 S 1 )=f

({

0

0

}

+λ 1

{

− 1

1

)}

=f (−λ 1 , λ 1 )=λ^21 − 2 λ 1

with respect toλ 1. Since df/dλ 1 = at 0 λ∗ 1 = , we obtain 1


X 2 =X 1 +λ∗ 1 S 1 =

{

0

0

}

+ 1

{

− 1

1

}

=

{

− 1

1

}

Since∇f 2 = ∇ f(X 2 )=


{− 1

− 1

}

and||∇f 2 || = 1. 4142 >ε, we proceed to update the
matrix [Bi] by computing


g 1 = ∇f 2 − ∇f 1 =

{

− 1

− 1

}


{

1

− 1

}

=

{

− 2

0

}

ST 1 g 1 =

{

− 1 1

}

{

− 2

0

}

= 2

S 1 ST 1 =

{

− 1

1

}

{

− 1 1

}

=

[

1 − 1

−1 1

]

[B 1 ]g 1 =

[

1 0

0 1

]{

− 2

0

}

=

{

− 2

0

}

([B 1 ]g 1 )T=

{

− 2

0

}T

=

{

− 20

}

gT 1 [B 1 ]g 1 =

{

− 20

}

[

1 0

0 1

]{

− 2

0

}

=

{

−2 0

}

{

− 2

0

}

= 4

[M 1 ]=λ∗ 1

S 1 ST 1

ST 1 g 1

= 1

(

1

2

)[

1 − 1

−1 1

]

=





1

2


1

2


1

2

1

2




Free download pdf