440 Nonlinear Programming III: Constrained Optimization Techniques
Proof: IfX∗is the optimum solution of the constrained problem, we have toprove
that
lim
rk→ 0
[min φ(X, rk )]=φ(X∗k, rk) =f(X∗) (7.177)
Sincef (X)is continous andf (X∗) ≤f(X)for all feasible pointsX, we can choose
feasible point
̃
Xsuch that
f (
̃
X) < f (X∗)+
ε
2
(7.178)
for any value ofε>0. Next select a suitable value ofk, sayK, such that
rk≤
{
ε
2 m
/
min
j
[
−
1
gj(
̃
X)
]}
(7.179)
From the definition of theφfunction, we have
f (X∗) ≤minφ(X, rk) =φ(X∗k, rk) (7.180)
whereX∗kis the unconstrained minimum ofφ(X, rk) Further,.
φ(X∗k, rk) ≤φ(X∗K, rk) (7.181)
sinceX∗kminimizesφ(X,rk) nd anya Xother thanX∗kleads to a value ofφgreater
than or equal toφ(X∗k, rk) Further, by choosing. rk< rK, we obtain
φ(X∗K, rK) =f(X∗K)−rK
∑m
j= 1
1
gj(X∗K)
>f (X∗K)−rk
∑m
j= 1
1
gj(X∗K)
>φ(X∗k, rk) (7.182)
asX∗kis the unconstrained minimum ofφ(X, rk) Thus.
f (X∗) ≤φ(X∗k, rk) ≤φ(X∗K, rk) < φ(X∗K, rK) (7.183)
But
φ(X∗K, rK) ≤φ(
̃
X, rK) =f(
̃
X)−rK
∑m
j= 1
1
gj(
̃
X)
(7.184)
Combining the inequalities (7.183) and (7.184), we have
f (X∗)≤ φ(X∗k, rk) ≤f(
̃
X)−rK
∑m
j= 1
1
gj(
̃
X)
(7.185)
Inequality (7.179) gives
−rK
∑m
j= 1
1
gj(
̃
X)
<
ε
2