References and Bibliography 477
7.18 D. Kavlie and J. Moe, Automated design of frame structure,ASCE Journal of the Struc-
tural Division, Vol. 97, No. ST1, pp. 33–62, Jan. 1971.
7.19 J. H. Cassis and L. A. Schmit, On implementation of the extended interior penalty func-
tion,International Journal for Numerical Methods in Engineering, Vol. 10, pp. 3–23,
1976.
7.20 R. T. Haftka and J. H. Starnes, Jr., Application of a quadratic extended interior penalty
function for structural optimization,AIAA Journal, Vol. 14, pp. 718–728, 1976.
7.21 A. V. Fiacco and G. P. McCormick,SUMT Without Parmaeters, System Research Mem-
orandum 121, Technical Institute, Northwestern University, Evanston, IL, 1965.
7.22 A. Ralston,A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
7.23 R. T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex pro-
gramming,Journal of Optimization Theory and Applications, Vol. 12, No. 6, pp. 555–562,
1973.
7.24 B. Prasad, A class of generalized variable penalty methods for nonlinear programming,
Journal of Optimization Theory and Applications, Vol. 35, pp. 159–182, 1981.
7.25 L. A. Schmit and R. H. Mallett, Structural synthesis and design parameter hierarchy,
Journal of the Structural Division, Proceedings of ASCE, Vol. 89, No. ST4, pp. 269–299,
1963.
7.26 J. Kowalik and M. R. Osborne,Methods for Unconstrained Optimization Problems, Amer-
ican Elsevier, New York, 1968.
7.27 N. Baba, Convergence of a random optimization method for constrained optimization
problems,Journal of Optimization Theory and Applications, Vol. 33, pp. 451–461, 1981.
7.28 J. T. Betts, A gradient projection-multiplier method for nonlinear programming,Journal
of Optimization Theory and Applications, Vol. 24, pp. 523–548, 1978.
7.29 J. T. Betts, An improved penalty function method for solving constrained parameter opti-
mization problems,Journal of Optimization Theory and Applications, Vol. 16, pp. 1–24,
1975.
7.30 W. Hock and K. Schittkowski, Test examples for nonlinear programming codes,Journal
of Optimization Theory and Applications, Vol. 30, pp. 127–129, 1980.
7.31 J. C. Geromel and L. F. B. Baptistella, Feasible direction method for large-scale noncon-
vex programs: decomposition approach,Journal of Optimization Theory and Applications,
Vol. 35, pp. 231–249, 1981.
7.32 D. M. Topkis, A cutting-plane algorithm with linear and geometric rates of convergence,
Journal of Optimization Theory and Applications, Vol. 36, pp. 1–22, 1982.
7.33 M. Avriel,Nonlinear Programming: Analysis and Methods, Prentice Hall, Englewood
Cliffs, NJ, 1976.
7.34 H. W. Kuhn, Nonlinear programming: a historical view, inNonlinear Programming,
SIAM-AMS Proceedings, Vol. 9, American Mathematical Society, Providence, RI, 1976.
7.35 J. Elzinga and T. G. Moore, A central cutting plane algorithm for the convex programming
problem,Mathematical Programming, Vol. 8, pp. 134–145, 1975.
7.36 V. B. Venkayya, V. A. Tischler, and S. M. Pitrof, Benchmarking in structural optimization,
Proceedings of the 4th AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis
and Optimization, Sept. 21–23, 1992, Cleveland, Ohio, AIAA Paper AIAA-92-4794.
7.37 W. Hock and K. Schittkowski,Test Examples for Nonlinear Programming Codes, Lecture
Notes in Economics and Mathematical Systems, No. 187, Springer-Verlag, Berlin, 1981.
7.38 S. S. Rao, Multiobjective optimization of fuzzy structural systems,International Journal
for Numerical Methods in Engineering, Vol. 24, pp. 1157–1171, 1987.