530 Geometric Programming
Table 8.3 Results for Example 8.10
Iteration Starting Ordinary geometric programming Solution
number design problem of OGP
1 x 1 =R 0 = 40 Minimizex 11 x 20 x 30 x 1 = 162. 5
x 2 =R 1 = 3 subject to x 2 = 5. 0
x 3 =R 2 = 3 0. 507 x− 10.^597 x^32 x− 31.^21 ≤ 1 x 3 = 2. 5
1. 667 (x 2 −^1 +x 3 −^1 )≤ 1
2 x 1 =R 0 = 162. 5 Minimizex 11 x 20 x 30 x 1 = 82. 2
x 2 =R 1 = 5. 0 subject to x 2 = 4. 53
x 3 =R 2 = 2. 5 0. 744 x− 10.^912 x 23 x− 30.^2635 ≤ 1 x 3 = 2. 265
3. 05 (x 2 −^0.^43 x 3 −^0.^571 +x 2 −^1.^43 x 30.^429 )≤ 1
2 x 2 −^1 x 3 ≤ 1
3 x 1 =R 0 = 82. 2 Minimizex 11 x 20 x 30 x 1 = 68. 916
x 2 =R 1 = 4. 53 subject to x 2 = 4. 2874
x 3 =R 2 = 2. 265 0. 687 x− 10.^876 x 23 x− 30.^372 ≤ 1 x 3 = 2. 1437
1. 924 x^01 x 2 −^0.^429 x− 30.^571 +
1. 924 x^01 x− 21.^492 x^03.^429 ≤ 1
2 x 2 −^1 x 3 ≤ 1
wherenis the number of active turns,Qthe number of inactive turns, andρthe weight
density of the spring. If the deflection of the spring isδ, we have
δ=
8 PC^3 n
Gd
or n=
Gdδ
8 PC^3
(E 3 )
whereGis the shear modulus,P the axial load on the spring, andCthe spring index
(C=D/d). Substitution of Eq. (E 3 ) nto (Ei 2 ) ivesg
f (X)=
π^2 ρGδ
32 P
d^6
D^2
+
π^2 ρQ
4
d^2 D (E 4 )
If the maximum shear stress in the spring (τ) is limited toτmax, the stress constraint
can be expressed as
τ=
8 KPC
π d^2
≤τmax or
8 KPC
π d^2 τmax
≤ 1 (E 5 )
whereKdenotes the stress concentration factor given by
K≈
2
C^0 5.^2
(E 6 )
The use of Eq. (E 6 ) n (Ei 5 ) esults inr
16 P
πτmax
D^3 /^4
d^11 /^4