742 Practical Aspects of Optimization
1
4
2
3
1
3
2
4
y 6
y 5
y 2
y 1
y 4
y 8
y 7
y 3
50 in.
25 in.
1000 lb
100 in.
50 in. 100 in.
Figure 14.2 Crane (planar truss).
Table 14.1
Area of Global node of: Direction cosines of member
Member, cross Length, Corner Corner
e section,Ae le(in.) 1,i 2,j lij=
Xj−Xi
le
mij=
Yj−Yi
le
1 A 1 55.9017 1 3 0.8944 0.4472
2 A 2 55.9017 3 2 0.8944 –0.4472
3 A 3 167.7051 3 4 0.8944 0.4472
4 A 4 141.4214 2 4 0.7071 0.7071
whereAeis the cross-sectional area,Eeis Young’s modulus,leis the length, and
(lij, mij) are the direction cosines of membere.Equation (E 1 ) can be used to compute
thestiffness matrices of the various members using the data of Table 14.1. When the
member stiffness matrices are assembled and the boundary conditions (y 1 =y 2 =y 3 =
y 4 = ) are applied, the overall stiffness matrix becomes 0
[K]=( 30 × 106 )
( 0. 8 A 1
55. 9017 +
0. 8 A 2
55. 9017 +
0. 8 A 3
167. 7051
) ( 0. 4 A 1
55. 9017 −
0. 4 A 2
55. 9017 +
0. 4 A 3
167. 7051
) (− 0. 8 A 3
167. 7051
) (− 0. 4 A 3
167. 7051
)
( 0. 2 A 1
55. 9017 +
0. 2 A 2
55. 9017 +
0. 2 A 3
167. 7051
) (− 0. 4 A 3
167. 70501
) (− 0. 2 A 3
167. 7051
)
symmetric
( 0. 8 A
3
167. 7051 +
0. 5 A 4
141. 4214
) ( 0. 4 A
3
167. 7051 +
0. 5 A 4
141. 4214
)
( 0. 2 A
3
167. 7051 +
0. 5 A 4
141. 4214
)