Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
Convex and Concave Functions 783

(d)f= 4 x 12 + 3 x 22 + 5 x 32 + 6 x 1 x 2 +x 1 x 3 − 3 x 1 − 2 x 2 + 5: 1


H(X)=





∂^2 f/∂x 12 ∂^2 f/∂x 1 ∂x 2 ∂^2 f/∂x 1 ∂x 3
∂^2 f/∂x 1 ∂x 2 ∂^2 f/∂x 22 ∂^2 f/∂x 2 ∂x 3
∂^2 f/∂x 1 ∂x 3 ∂^2 f/∂x 2 ∂x 3 ∂^2 f/∂x 32





=



8 6 1

6 6 0

1 0 10



Here the principal minors are given by

| 8 | = 8 > 0




8 6

6 6




∣=^12 >^0

∣ ∣ ∣ ∣ ∣ ∣

8 6 1

6 6 0

1 0 10

∣ ∣ ∣ ∣ ∣ ∣

= 114 > 0

and hence the matrixH(X) is positive definite for all real values ofx 1 ,x 2 , and
x 3. Therefore,f(X)is a strictly convex function.
Free download pdf