Answers to Selected Problems
CHAPTER 1
1.1Min.f= 5 xA− 08 xB+ 601 xC+ 51 xD, 0. 05 xA+ 0. 05 xB+ 0. 1 xC+
0. 15 xD≤ 0001 , 0. 1 xA + 0. 15 xB+ 0. 2 xC+ 0. 05 xD≤ 0002 , 0. 05 xA+ 0. 1 xB+
0. 1 xC+ 0. 15 xD≤ 5001 , xA≥ 0005 , xB≥ 0 ,xC≥ 0 , xD≥ 0004
1.2(a) X∗= { 0. 65 , 0. 53521 } (b) X∗= { 0. 9 , 2. 5 }
(c) X∗= { 0. 65 , 0. 53521 } 1.5x∗ 1 =x 2 ∗= 003
1.9(a)R∗ 1 = 4. 472 , R 2 ∗= 2. 236 (b)R 1 ∗= 3. 536 , R 2 ∗= 3. 536
(c) R∗ 1 = 6. 67 , R∗ 2 = 3. 33
1.11(a)y 1 = nl x 1 , y 2 = nl x 2 , nl f= 2 y 1 + 3 y 2
(b) f= 10 y^2 x^2 ,x 1 = 01 y^2 , ln(log 10 f ) =ln(log 10 x 1 ) n+l x 2
1.14xij= if city 1 jis visited immediately after cityi, and=0 otherwise.
Find{xij} o minimizet f=
∑n
i= 1
∑n
j= 1
dijxijsubject to
∑n
i= 1
xij= 1 (i= 1 , 2 ,... , n),
i=jand
∑n
j= 1
xij= 1 (i= 1 , 2 ,... , n), j=i
1.19Min.f=ρlbd,
Py
bd
+
6 Pxl
bd^2
≤σy,
Py
bd
+
6 Pxl
bd^2
≤
π^2 Ed^2
48 l^2
, b≥ 0. 5 , b≤ 2 d.
1.25Max.f=^23 tm+^35 td, tm+td≤ 04 , td≥ 1. 25 tm, 0 ≤tm≤ 42 , 0 ≤td≤ 0. 2
1.29Min.f=π x 3 [x^21 − (x 1 −x 2 )^2 ]+^43 π[x^31 − (x 1 −x 4 )^3 ] π x, 3 (x 1 −x 2 )^2 +
4
3 π(x^1 −x^4 )
(^3) − 4 , 619 , 606 ≤ 0 , x
2 −
pR 0
S.e+ 0. 4 p
≤ 0 , x 4 −
pR 0
S.e+ 0. 8 p
≤ 0
CHAPTER 2
2.1r∗= R 2 .3x∗= 1. 5 (inflection point)
2.5x= −1 (not min, not max),x=2 (min) 2.9d=
(
D^5
8 f l
) 1 / 4
2.10 3 5.36 m 2.11(a) 79. 28 ◦ (b) 0 .911 from end of stroke
Engineering Optimization: Theory and Practice, Fourth Edition Singiresu S. Rao 795
Copyright © 2009 by John Wiley & Sons, Inc.