68 Classical Optimization Techniques
2.3 Multivariable Optimization with No Constraints
In this section we consider the necessary and sufficient conditions for the minimum
or maximum of an unconstrained function of several variables. Before seeing these
conditions, we consider the Taylor’s series expansion of a multivariable function.Definition:rth Differential off. If all partial derivatives of the functionfthrough
orderr≥1 exist and are continuous at a pointX∗, the polynomialdrf (X∗)=∑ni= 1∑nj= 1· · ·
∑nk= 1
︸ ︷︷ ︸
r ummationsshihj· · ·hk∂rf (X∗)
∂xi∂xj· · · ∂xk(2.6)
is called therth differential off atX∗. Notice that there arersummations and onehi
is associated with each summation in Eq. (2.6).For example, whenr=2 andn=3, we haved^2 f (X∗)=d^2 f (x 1 ∗, x∗ 2 , x∗ 3 )=∑^3
i= 1∑^3
j= 1hihj∂^2 f (X∗)
∂xi∂xj=h^21∂^2 f
∂x^21(X∗)+h^22∂^2 f
∂x^22(X∗)+h^23∂^2 f
∂x^23(X∗)
+ 2 h 1 h 2∂^2 f
∂x 1 ∂x 2(X∗)+ 2 h 2 h 3∂^2 f
∂x 2 ∂x 3(X∗)+ 2 h 1 h 3∂^2 f
∂x 1 ∂x 3(X∗)
The Taylor’s series expansion of a functionf(X) about a pointX∗is given byf(X)=f (X∗) +df (X∗)+1
2!
d^2 f (X∗)+1
3!
d^3 f (X∗)+· · · +
1
N!
dNf (X∗)+RN(X∗,h) (2.7)where the last term, called theremainder, is given byRN(X∗,h)=1
(N+ 1 )!
dN+^1 f (X∗+θh) (2.8)where 0< θ <1 andh=X−X∗.Example 2.3 Find the second-order Taylor’s series approximation of the functionf (x 1 , x 2 , x 3 )=x^22 x 3 +x 1 ex^3about the pointX∗= { 1 , 0 ,− 2 }T.SOLUTION The second-order Taylor’s series approximation of the functionfabout
pointX∗is given byf(X)=f
1
0
− 2
+df
1
0
− 2
+^1
2!
d^2 f