SECTION 3.4 Holder Inequality ̈ 159
We may assume that both A, B 6 = 0, else the theorem is clearly
true. Therefore by using Young’s inequality, we see that for each
i= 1, 2 , ..., n, that
|xi|
A
·
|yi|
B
≤
|xi|p
pAp
+
|yi|q
qB
.
Therefore,
1
AB
∑n
i=1
|xiyi| ≤
∑n
i=1
Ñ
|xi|p
pAp
+
|yi|q
qB
é
=
1
p
+
1
q
= 1.
This implies that
∑n
i=1
|xiyi|≤AB=
Ñn
∑
i=1
|xi|p
é 1 /pÑn
∑
j=1
|yj|q
é 1 /q
,
and we’re done.
Note that if we set allyi= 1 then we get
∑n
i=1
|xi|≤n^1 /q
Ñn
∑
i=1
|xi|p
é 1 /p
=n^1 −^1 /p
Ñn
∑
i=1
|xi|p
é 1 /p
,
and so
1
n
∑n
i=1
|xi|≤
Ñ n
∑
i=1
|xi|p/n
é 1 /p
for anyp >1. This proves that
AM(|x 1 |,|x 2 |,...,|xn|)≤pM(|x 1 |,|x 2 |,...,|xn|)
wheneverp >1.
Finally, assume that 0< p < q and assume thatx 1 , x 2 , ..., xn are
non-negative. We shall show that
pM(x 1 ,x 2 ,...,xn)≤qM(x 1 ,x 2 ,...,xn).