SECTION 5.4 Polynomial Approximations 295
Further valid sums can be obtained by differentiating.
Exercises
- Find the Maclaurin series expansion for each of the functions be-
low:
(a)1
1 −x^2
(b)
2 x
1 − 2 x^2
(c)1
(1−x)^2
(d)1
(1−x^2 )^2
(e) x^2 sinx(f) sin^2 x (Hint: Use a double-
angle identity.)(g)1
(1−x)^3
(h) ln(1 +x^2 )
(i) tan−^14 x
(j) xex
2- Find the Maclaurin series expansion for the rational function
f(x) =
x+ 1
x^2 +x+ 1
. (Don’t try to do this directly; use an appro-
priate trick.) - Sum the following series:
(a)∑∞
n=0(x+ 1)n(b)∑∞
n=1n(x+ 1)n(c)∑∞
n=0(−1)nxn
(n+ 1)!(d)∑∞
n=1(−1)n+1xn
n(e)∑∞
n=1(−1)n+1x^2 n
n(f)∑∞
n=1n^2 xn- Sum the following numerical series:
(a)∑∞
n=0(−1)nπ^2 n+1
(2n+ 1)!(b)∑∞
n=1(−1)n+1(e−1)n
n(c)∑∞
n=0(−1)n(ln 2)n
(n+ 1)!(d)∑∞
n=1(−1)n+1
n 22 n(e)∑∞
n=1n^2
3 n