SECTION 5.4 Polynomial Approximations 297
(i) By equating the imaginary parts of DeMoivre’s formula
cosnθ+isinnθ= (cosθ+isinθ)n= sinnθ(cotθ+i)n,
obtain the identity
sinnθ= sinnθ
Ñ
n
1
é
cotn−^1 θ−
Ñ
n
3
é
cotn−^3 θ+
Ñ
n
5
é
cotn−^5 θ−···
.
(ii) Letn= 2m+ 1 and express the above as
sin(2m+ 1)θ= sin^2 m+1θPm(cot^2 θ), 0 < θ <
π
2
,
wherePm(x) is the polynomial of degreemgiven by
Pm(x) =
Ñ
2 m+ 1
1
é
xm−
Ñ
2 m+ 1
3
é
xm−^1 +
Ñ
2 m+ 1
5
é
xm−^2 −···.
(iii) Conclude that the real numbers
xk= cot^2
(
kπ
2 m+ 1
)
, 1 ≤k≤m,
are zeros of Pm(x), and that they are all distinct.
Therefore,x 1 , x 2 , ..., xmcompriseallof the zeros ofPm(x).
(iv) Conclude from part (iii) that
∑m
k=1
cot^2
( kπ
2 m+ 1
)
=
∑m
k=1
xk=
Ñ
2 m+ 1
3
é¬Ñ
2 m+ 1
1
é
=
m(2m−1)
3
,
proving the claim of Step 1.
Step 2. Starting with the familiar inequality sinx < x < tanx
for 0< x < π/2, show that
cot^2 x <
1
x^2
<1 + cot^2 x, 0 < x <
π
2
.
Step 3. Putx =
kπ
2 m+ 1
, where k andm are positive integers
and 1≤k≤m, and infer that
∑m
k=1
cot^2
( kπ
2 m+ 1
)
<
(2m+ 1)^2
π^2
∑m
k=1
1
k^2
< m+
∑m
k=1
cot^2
( kπ
2 m+ 1
)
.