SECTION 5.4 Polynomial Approximations 297
(i) By equating the imaginary parts of DeMoivre’s formulacosnθ+isinnθ= (cosθ+isinθ)n= sinnθ(cotθ+i)n,obtain the identitysinnθ= sinnθ
Ñ
n
1é
cotn−^1 θ−Ñ
n
3é
cotn−^3 θ+Ñ
n
5é
cotn−^5 θ−···
.(ii) Letn= 2m+ 1 and express the above assin(2m+ 1)θ= sin^2 m+1θPm(cot^2 θ), 0 < θ <π
2,
wherePm(x) is the polynomial of degreemgiven byPm(x) =Ñ
2 m+ 1
1é
xm−Ñ
2 m+ 1
3é
xm−^1 +Ñ
2 m+ 1
5é
xm−^2 −···.(iii) Conclude that the real numbersxk= cot^2(
kπ
2 m+ 1)
, 1 ≤k≤m,are zeros of Pm(x), and that they are all distinct.
Therefore,x 1 , x 2 , ..., xmcompriseallof the zeros ofPm(x).
(iv) Conclude from part (iii) that
∑m
k=1cot^2( kπ2 m+ 1)
=∑m
k=1xk=Ñ
2 m+ 1
3é¬Ñ
2 m+ 1
1é
=m(2m−1)
3,
proving the claim of Step 1.
Step 2. Starting with the familiar inequality sinx < x < tanx
for 0< x < π/2, show thatcot^2 x <1
x^2<1 + cot^2 x, 0 < x <π
2.
Step 3. Putx =kπ
2 m+ 1, where k andm are positive integers
and 1≤k≤m, and infer that
∑m
k=1cot^2( kπ2 m+ 1)
<(2m+ 1)^2
π^2∑m
k=11
k^2< m+∑m
k=1cot^2( kπ2 m+ 1)
.