Advanced High-School Mathematics

(Tina Meador) #1

SECTION 5.4 Polynomial Approximations 297


(i) By equating the imaginary parts of DeMoivre’s formula

cosnθ+isinnθ= (cosθ+isinθ)n= sinnθ(cotθ+i)n,

obtain the identity

sinnθ= sinnθ




Ñ
n
1

é
cotn−^1 θ−

Ñ
n
3

é
cotn−^3 θ+

Ñ
n
5

é
cotn−^5 θ−···



.

(ii) Letn= 2m+ 1 and express the above as

sin(2m+ 1)θ= sin^2 m+1θPm(cot^2 θ), 0 < θ <

π
2

,

wherePm(x) is the polynomial of degreemgiven by

Pm(x) =

Ñ
2 m+ 1
1

é
xm−

Ñ
2 m+ 1
3

é
xm−^1 +

Ñ
2 m+ 1
5

é
xm−^2 −···.

(iii) Conclude that the real numbers

xk= cot^2

(

2 m+ 1

)
, 1 ≤k≤m,

are zeros of Pm(x), and that they are all distinct.
Therefore,x 1 , x 2 , ..., xmcompriseallof the zeros ofPm(x).
(iv) Conclude from part (iii) that
∑m
k=1

cot^2

( kπ

2 m+ 1

)
=

∑m
k=1

xk=

Ñ
2 m+ 1
3

é¬Ñ
2 m+ 1
1

é
=

m(2m−1)
3

,

proving the claim of Step 1.
Step 2. Starting with the familiar inequality sinx < x < tanx
for 0< x < π/2, show that

cot^2 x <

1

x^2

<1 + cot^2 x, 0 < x <

π
2

.

Step 3. Putx =


2 m+ 1

, where k andm are positive integers
and 1≤k≤m, and infer that
∑m
k=1

cot^2

( kπ

2 m+ 1

)
<

(2m+ 1)^2
π^2

∑m
k=1

1

k^2

< m+

∑m
k=1

cot^2

( kπ

2 m+ 1

)
.
Free download pdf