336 CHAPTER 6 Inferential Statistics
x^2
d2
dx^2(x+ 1)n
(x+ 1)N−n = n(n−1)x^2 (x+ 1)N−^2= x^2n(n−1)
N(N−1)d^2
dx^2(x+ 1)N.Next comes the hard part (especially the first equality):
∑N
k=0(∑nm=0m(m−1)(
n
m)(
N−n
k−m))
=
∑n
m=0(m−1)(
n
m)
xm·N∑−n
p=0(
N−n
p)
xp=ñ
x^2 d2
dx^2 (x+ 1)nô
(x+ 1)N−n= x^2 Nn((nN−−1)1) d2
dx^2 (x+ 1)N= Nn((nN−−1)1)∑N
k=0k(k−1)(
N
k)
xk.Just as we did at a similar juncture when computingE(X), we equate
the coefficients ofxk, which yields the equality
∑n
m=0m(m−1)Ñ
n
méÑ
N−n
k−mé
=n(n−1)k(k−1)
N(N−1)Ñ
N
ké
.The left-hand sum separates into two sums; solving for the first sum
gives
∑nm=0
m^2Ñ
n
méÑ
N−n
k−mé
=
n(n−1)k(k−1)
N(N−1)Ñ
N
ké
+∑n
m=0mÑ
n
méÑ
N−n
k−mé=
n(n−1)k(k−1)
N(N−1)Ñ
N
ké
+nk
NÑ
N
ké
,which implies that
E(X^2 ) =
n(n−1)k(k−1)
N(N−1)+
nk
N.
Finally, from this we obtain the variance of the hypergeometric distri-
bution: