Advanced High-School Mathematics

(Tina Meador) #1

336 CHAPTER 6 Inferential Statistics


x^2


d

2
dx^2

(x+ 1)n


(x+ 1)N−n = n(n−1)x^2 (x+ 1)N−^2

= x^2

n(n−1)
N(N−1)

d^2
dx^2

(x+ 1)N.

Next comes the hard part (especially the first equality):


∑N
k=0

(∑n

m=0

m(m−1)

(
n
m

)(
N−n
k−m

))
=
∑n
m=0

(m−1)

(
n
m

)
xm·

N∑−n
p=0

(
N−n
p

)
xp

=

ñ
x^2 d

2
dx^2 (x+ 1)

n

ô
(x+ 1)N−n

= x^2 Nn((nN−−1)1) d

2
dx^2 (x+ 1)

N

= Nn((nN−−1)1)

∑N
k=0

k(k−1)

(
N
k

)
xk.

Just as we did at a similar juncture when computingE(X), we equate
the coefficients ofxk, which yields the equality


∑n
m=0

m(m−1)

Ñ
n
m

éÑ
N−n
k−m

é
=

n(n−1)k(k−1)
N(N−1)

Ñ
N
k

é
.

The left-hand sum separates into two sums; solving for the first sum
gives


∑n

m=0


m^2

Ñ
n
m

éÑ
N−n
k−m

é
=
n(n−1)k(k−1)
N(N−1)

Ñ
N
k

é
+

∑n
m=0

m

Ñ
n
m

éÑ
N−n
k−m

é

=

n(n−1)k(k−1)
N(N−1)

Ñ
N
k

é
+

nk
N

Ñ
N
k

é
,

which implies that


E(X^2 ) =

n(n−1)k(k−1)
N(N−1)

+

nk
N

.

Finally, from this we obtain the variance of the hypergeometric distri-
bution:

Free download pdf