158 9 Irreducible Tensors
with
N=!
( 2 − 1 )!!
=
1 · 2 · 3 ···(− 1 )·
1 · 3 · 5 ···( 2 − 3 )·( 2 − 1 )
. (9.11)
For a proof of this relation see Sect.10.3.5. The special casea = bleads to
P(a,a)=a^2 N, sinceP( 1 )=1.
Examples for= 1 , 2 , 3 ,4 are listed explicitly:
P 1 (a,b)=abP 1 (̂a·̂b), P 1 (x)=x, (9.12)P 2 (a,b)=2
3
a^2 b^2 P 2 (̂a·̂b), P 2 (x)=3
2
(
x^2 −1
3
)
, (9.13)
P 3 (a,b)=2
5
a^3 b^3 P 3 (̂a·̂b), P 3 (x)=5
2
(
x^3 −3
5
x)
, (9.14)
P 4 (a,b)=8
35
a^4 b^4 P 4 (̂a·̂b), P 4 (x)=35
8
(
x^4 −6
7
x^2 +3
35
)
. (9.15)
Some general properties of Legendre polynomials, in particular the prescription for
their evaluation via a generating function, are presented in Sect.10.3.5.
9.4 Cartesian and Spherical Tensors
9.4.1 Spherical Components of a Vector
Lete(x),e(y),e(z)be unit vectors parallel to the coordinate axes. A vectorais given
by the linear combinationa=axe(x)+aye(x)+aze(x).Theax,ay,azare the standard
Cartesian components. Thespherical unit vectors
e(^0 )=e(z), e(±^1 )=∓1
√
2
(
e(x)∓ie(y))
, (9.16)
which have the properties
(
e(m))∗
=(− 1 )me(−m),(
e(m))∗
·e(m′)
=δmm′, m,m′=− 1 , 0 , 1 , (9.17)can as well be used as basis vectors. Then the vectorais represented by
a=a(^1 )e(^1 )+a(^0 )e(^0 )+a(−^1 )e(−^1 )=∑^1
m=− 1a(m)e(m), (9.18)