11.2 Δ-Tensors 185
Δ()μ
1 μ 2 ···μ− 1 λ,μ′ 1 μ′ 2 ···μ′− 1 λ
=
2 + 1
2 − 1
Δ(μ−^1 )
1 μ 2 ···μ− 1 ,μ′ 1 μ′ 2 ···μ′− 1
. (11.6)
The total contraction of the fore with the hind subscripts yields
Δ()μ 1 μ 2 ···μ,μ 1 μ 2 ···μ= 2 + 1 , (11.7)
which is the number of the independent components of an irreducible tensor of rank.
In the following product of twoΔ()-tensors, fore and hind subscripts are mixed:
Δ()μ 1 μ 2 ···μ− 1 ν,μν 1 ν 2 ···ν− 1 Δ()νν
1 ν 2 ···ν− 1 ,μ′ 1 μ′ 2 ···μ′
=
1
( 2 − 1 )
Δ()μ
1 μ 2 ···μ,μ′ 1 μ′ 2 ···μ′
.
(11.8)
The special case=2 of this equation corresponds to
Δμλ,νκΔλκ,μ′ν′=
1
6
Δμν,μ′ν′. (11.9)
The total contraction{μ 1 μ 2 ···μ}={μ′ 1 μ′ 2 ···μ′}in (11.8) yields
Δ()μ 1 μ 2 ···μ− 1 ν,μν 1 ν 2 ···ν− 1 Δ()νν 1 ν 2 ···ν− 1 ,μ 1 μ 2 ···μ=
2 + 1
( 2 − 1 )
. (11.10)
The contractionμ′=μ, renamed asμ,in(11.8) and use of (11.6), yields
Δ()μ 1 μ 2 ···μ− 1 ν,μν 1 ν 2 ···ν− 1 Δ()νν 1 ν 2 ···ν− 1 ,μμ′
1 μ′ 2 ···μ−^1
=
2 + 1
( 2 − 1 )^2
Δμ( 1 −μ^12 )···μ− 1 ,μ′
1 μ′ 2 ···μ′− 1
.
(11.11)
The special case=2of(11.11) corresponds to
Δμλ,νκΔλκ,νμ′=
5
18
δμμ′. (11.12)
The next contractionμ′=μgives
Δμλ,νκΔλκ,νμ=
5
6
. (11.13)
The relations (11.12) and (11.13) can also be inferred from (11.9). For comparison,
it is recalled thatΔμλ,νκΔνκ,λμ=Δμλ,λμ=5, cf. (11.7). The order of subscripts
matters!
11.1 Exercise: Contraction Rules for Delta-Tensors
Verify (11.6)for=2.