Tensors for Physics

(Marcin) #1

192 11 Isotropic Tensors


Δμν,λκ,σ τΔμ′ν′,λκ,σ′τ′=

5

48

(Δμν,μ′ν′Δστ,σ′τ′+Δμν,σ′τ′Δστ,μ′ν′)


1

24

Δμν,σ τΔμ′ν′,σ′τ′. (11.39)

The double contraction{στ}={σ′τ′}, in the last equation, yields


Δμν,λκ,σ τΔμ′ν′,λκ,σ τ=

7

12

Δμν,μ′ν′, (11.40)

and consequently


Δμν,λκ,σ τΔμν,λκ,σ τ=

35

12

,

which impliesΔμν,λκ,σ τΔμν,λκ,σ τ =Δμν,νκ,κμ, see the last equation of (11.38).
The following contraction of four isotropic tensors yields the same numerical value,
viz.


Δμν,βγ ,μ′ν′Δμ′ν′,αγ ,σ τσ τ,λ,μνεβλα=

35

12

. (11.41)

Furthermore, by analogy to (11.22), the tensor defined by (11.36) can also be
expressed by


Δμν,λκ,αβ=

5

2

Δ(μνσ,αβτ^3 ) Δλκ,σ τ. (11.42)

11.4.2 Tensor Product of Second Rank Tensors


For irreducible second rank tensorsSandA, the expression (11.35) reduces to


(S·A)μν≡ SμλAλν =Δμν,λκ,μ′ν′SλκAμ′ν′. (11.43)

Products of the coupling tensorΔμν,λκ,σ τwith symmetric traceless dyadic tensors
constructed from the components of two vectorsaandbare listed next:


aμaλ bλbν ≡Δμν,λκ,σ τ aλaκ bσbτ

=a·baμbν−

1

3

(

b^2 aμaν+a^2 bμbν

)

, (11.44)

aμbλ aλbν ≡Δμν,λκ,σ τ aλbκ aσbτ

=

− 1

6

a·baμbν+

1

4

(

b^2 aμaν+a^2 bμbν

)

, (11.45)
Free download pdf