256 13 Spin Operators
∑m 1∑
m 2|j 1 m 1 〉|j 2 m 2 〉(j 1 m 1 ,j 2 m 2 |jm)=|jm〉.The nondiagonal elements of the spherical harmonicY(m)(u)are related to the spher-
ical tensor operators by[
Y(m)(u)]jj′
=PjY(m)(u)Pj′
=√
2 j+ 1
4 π(
j 0 , 0 |j′ 0)
T
jj′
m. (13.67)By analogy to (13.67), the operator form of the Cartesian tensoruμ 1 ···uμ is(uμ 1 ···uμ)jj′
=√
!
( 2 + 1 )!!
√
2 j+ 1 (j 0 , 0 |j′ 0 )T
jj′
μ 1 ···μ. (13.68)The tensor operators have the properties:(i) The hermitian adjoint ofTjj′
μ 1 ···μis(Tjj′
μ 1 ···μ)†=(−^1 )j−j′
Tj′j
μ 1 ···μ. (13.69)(ii) Orthogonality and normalization
tr{Tjj′
μ 1 ···μ(Tjj′
ν 1 ···ν′)
†}=δ
′Δ
()
μ 1 ···μ,ν 1 ···ν. (13.70)The theoretical description of therotational Raman scatteringinvolves the elements
oftheanisotropicmolecularpolarizabilitytensorwhicharenon-diagonalwithrespect
to the rotational quantum number, cf. (13.53). The relevant operators arePjuμuνPj
′
=(uμuν)jj
′
,withj′=j±2. In particular, one has(uμuν)jj±^2 =√
2
15
√
2 j+ 1 (j 0 , 20 |j± 20 ) Tμνjj±^2. (13.71)The Clesch-Gordan coefficients are(j 0 , 20 |j+ 20 )=√
3
2
√
(j+ 1 )(j+ 2 )
( 2 j+ 1 )( 2 j+ 3 ),
(j 0 , 20 |j− 20 )=√
3
2
√
j(j− 1 )
( 2 j+ 1 )( 2 j− 1 )