264 14 Rotation of Tensors
Notice thatm 1 +m 2 assumes the five valuesm=− 2 ,− 1 , 0 , 1 ,2. The fourth rank
tensor obeys the eigenvalue equation
∏^2m=− 2(H−im 1 )= 0 , (14.30)with these five eigenvalues form. The corresponding eigen-tensors are
Pμν,μ(m)′ν′=∑^1
m 1 =− 1∑^1
m 2 =− 1Pμμ(m^1 ′)Pνν(m′^2 )δ(m,m 1 +m 2 ), (14.31)where theδ(m,m 1 +m 2 )=1form=m 1 +m 2 , andδ(m,m 1 +m 2 )=0, for
m=m 1 +m 2. In terms of these projectors, the spectral decomposition ofHreads
Hμν,μ′ν′=∑^2
m=− 2imP(μν,μm)′ν′. (14.32)14.2.3 Fourth Rank Rotation Tensor
By analogy to the rotation of a vector, cf. (14.3), the rotation of a second rank tensor
by the finite angleφis given by
A′μν=(exp[φH])μν,μ′ν′Aμ′ν′≡Rμν,μ′ν′(φ)Aμ′ν′, (14.33)with the fourth rank rotation tensor
Rμν,μ′ν′(φ)=∑^2
m=− 2exp[im]Pμν,μ(m)′ν′. (14.34)Decomposition into real and imaginary parts yields, by analogy to (14.16)
Rμν,μ′ν′(φ)=P(μν,μ^0 ) ′ν′+∑^2
m= 1[
cos(mφ)(
Pμν,μ(m)′ν′+Pμν,μ(−m)′ν′)
+sin(mφ)i(
Pμν,μ(m)′ν′−Pμν,μ(−m)′ν′)]
. (14.35)
The comparison of the formulas for the rotation of second rank tensor with those for
the rotation of a vector indicates how the general case of a rotation of a tensor of
rankcan be treated.
