Tensors for Physics

(Marcin) #1

14.5 Additional Formulas Involving Projectors 269


bμνPμν,μ(±^2 )′ν′aμ′ν′=

1

2

bμνaμν−hμbμνaνκhκ+

1

4

(hμbμνhν)(hμ′aμ′ν′hν′)


i
2

[bμνHντaτμ−hμbμνHντaτκhκ]. (14.58)

Now let the tensorabe constructed from the components of the unit vectorse,viz.
aμν=eμeν.Then the real and imaginary parts of (14.55) and (14.56)are


P(μν,μ^0 ) ′ν′eμ′eν′ =

3

2

hμhν

[

(h·e)^2 −

1

3

]

, (14.59)

(Pμν,μ(^1 ) ′ν′+Pμν,μ(−^1 )′ν′)eμ′eν′ =


1

2

(hμeν+hνeμ)(h·e)−hμhν(h·e)^2 ,

(Pμν,μ(^2 ) ′ν′+Pμν,μ(−^2 )′ν′)eμ′eν′ =eμeν − 2 hμeν(h·e)+


1

2

hμhν[ 1 +(h·e)^2 ],

i

(

Pμν,μ(^1 ) ′ν′−Pμν,μ(−^1 )′ν′

)

eμ′eν′ =[hμ(h×e)ν+hν(h×e)μ](h·e),

i

(

Pμν,μ(^2 ) ′ν′−Pμν,μ(−^2 )′ν′

)

eμ′eν′ =

1

2

[(h×e)μeν+(h×e)νeμ]


1

2

[hμ(h×e)ν+hν(h×e)μ](h·e). (14.60)

The cross product(h×e)stems fromHμτeτ =(h×e)μ.Fore=h, all terms
on the right hand side of (14.60) and in the second and third equations of (14.59)
vanish. This is obvious since a rotation about an axis parallel toedoes not change the
direction ofe.Foreperpendicular toh, the equations involvingP..(±^1 )yield zero,
the remaining equations reduce to


Pμν,μ(^0 ) ′ν′eμ′eν′ =−

1

2

hμhν, (14.61)
(
Pμν,μ(^2 ) ′ν′+Pμν,μ(−^2 )′ν′

)

eμ′eν′ =eμeν+

1

2

hμhν,

i

(

Pμν,μ(^2 ) ′ν′−Pμν,μ(−^2 )′ν′

)

eμ′eν′ =

1

2

[(h×e)μeν+(h×e)νeμ].

Next, the special caseaμν= eμuν is considered, where the unit vectors are per-
pendicular to each other. Then (14.55) and (14.56) lead to


Pμν,μ(^0 ) ′ν′eμ′uν′ =

3

2

hμhν (h·e)(h·u), (14.62)
(
Pμν,μ(^1 ) ′ν′+P(μν,μ−^1 )′ν′


)

eμ′uν′ =

1

4

[(hμuν+hνuμ)(h·e)+(hμeν+hνeμ)(h·u)]
− 2 hμhν(h·e)(h·u),
Free download pdf