16.3 Viscosity and Non-equilibrium Alignment Phenomena 317
∇μδP=−kμ= 2 ∇νημνμ′ν′∇μ′vν′. (16.55)
For the geometry considered here, this relation is equal to
∇μδP=−kμ=γ′e
y
νημνμ′ν′e
y
μ′e
x
ν′, (16.56)
where∂γ/∂y=γ′is the derivative of the shear rate. The ratio between thelon-
gitudinal pressure gradient exμ∇μδPandγ′defines the effective shear viscosity
ηPois=ηPois(h), is equal to the effective viscosity for the Couette geometry (16.51),
viz.
exμ∇μδP/γ′=exμeyνημνμ′ν′eyμ′eνx′=ηPois=ηCouette(h).
Similarly, the effectivenormal viscosityandtransverse viscositycoefficientsηnorm
andηtranscan be defined via thenormal pressure gradient eyμ∇μδPand thetransverse
pressure gradient−eμz∇μδP. These relations are
e
y
μ∇μδP=γ′e
y
μe
y
νημνμ′ν′e
y
μ′e
x
ν′ =γ
′ηnorm, (16.57)
ηnorm=hxhy
[
η(^0 )
(
3 h^2 y− 1
)
+η(^1 +)
(
2 − 4 h^2 y
)
+η(^2 +)
(
h^2 y− 1
)]
+hy
[
2 η(^1 −)h^2 y+η(^2 −)
(
1 −h^2 y
)]
,
ezμ∇μδP=γ′ezμeyνημνμ′ν′eyμ′exν′ =γ′ηtrans, (16.58)
ηtrans=hxhz
[
3 η(^0 )h^2 y+η(^1 +)
(
1 − 4 h^2 y
)
+η(^2 +)
(
h^2 y− 1
)]
+hz
[
η(^1 −)
(
1 − 2 h^2 y
)
+η(^2 −)
(
h^2 y− 1
)]
.
In contradistinction to the longitudinal viscosity, which is positive, the normal and
transverse effective viscosity coefficients may have either sign. The contributions to
ηnormandηtrans, which involve the coefficientsη(^1 −),η(^2 −), change sign whenhis
replaced by−h.
As above, in connection with the effective shear viscosity, the labels 1, 2 ,3are
used for the field parallel to thex-,y- andz-directions. From (16.57)to(16.58)
follows
ηnorm 1 = 0 ,ηnorm 2 = 2 η(^1 −),η 3 norm= 0 ,
ηtrans 1 = 0 ,ηtrans 2 = 0 ,ηnorm 3 =η(^1 −)−η(^2 −).