394 Appendix: Exercises...
(i) Tetrahedron: the position vectors of the corners are
u^1 =ex+ey+ez, u^2 =−ex−ey+ez,
u^3 =ex−ey−ez, u^4 =−ex+ey−ez.
In the productsuiμuiνthe mixed terms involvingexμeyν,exμezν,eyμezνhave the signs
(+,+,+),(+,−,−),(−,−,+),(−,+,−)fori = 1 , 2 , 3 ,4, respectively. The
sum of these mixed terms vanishes and one finds
∑^4
i= 1
uμiuiν= 4 (eμxexν+eμyeνy+ezμezν)= 4 δμν,
thus the moment of inertia tensor
Θμν= 8 mδμν
is isotropic.
(ii) Octahedron: here the sum
∑ 6
i= 1 u
i
μu
i
νyields 2(e
x
μe
x
ν+e
y
μe
y
ν+ezμezν)and conse-
quently
Θμν= 4 mδμν.
5.2 Verify the Relation(5.51)for the Triple Product of a Symmetric Traceless
Tensor(p.72)
Hint: use the matrix notation
⎛
⎝
a 00
0 b 0
00 c
⎞
⎠,
with c=−(a+b),for the symmetric traceless tensor in its principal axis system.
Compute the expressions on both sides of(5.51)and compare.
In matrix notation, the left hand side of
a·a·a=
1
2
a(a:a)
is
⎛
⎝
2 a^3 / 3 −b^3 / 3 −c^3 / 30 0
02 b^3 / 3 −c^3 / 3 −c^3 / 30
002 c^3 / 3 −a^3 / 3 −b^3 / 3
⎞
⎠. (A.10)