Tensors for Physics

(Marcin) #1

Appendix: Exercises... 403


Exercise Chapter 9


9.1 Verify the Required Properties of the Third and Fourth Rank Irreducible
Tensors(9.5)and(9.6) (p. 157)


The required symmetry of the third and fourth rank tensorsaμaνaλandaμaνaλaκ,
as given explicitly by (9.5) and (9.6) is seen by inspection, note thataμaν=aνaμ
andδμν=δνμ.
Settingλ=ν,in(9.5), leads to


aμaνaν=aμa^2 −

1

5

a^2 (aμ 3 +aνδμν+aνδμν)= 0.

Hereδνν=3 andaνδμν=aμare used.
Likewise, puttingκ=λin (9.6), yields


aμaνaλaκ =aμaνa^2


1

7

a^2 (aμaν 3 +aμaλδνλ+aμaλδνλ+aνaλδμλ+aνaλδμλ+a^2 δμν)

+

1

35

a^4 (δμν 3 +δμλδνλ+δμλδνλ)

=aμaνa^2

(

1 −

1

7

7

)


1

7

a^4 δμν+

1

35

a^4 δμν 5 = 0 ,

where, e.g.aλδμλ=aμandδμλδνλ=δμνhave been used.


Exercises Chapter 10


10.1 Prove the Product Rule(10.13)for the Laplace Operator(p.166)
The proof of (10.13), viz.


Δ(g(r)Xμ 1 μ 2 ···μ)=(g′′− 2 r−^1 g′)Xμ 1 μ 2 ···μ

starts from the general relation


Δ(fg)=fΔg+ 2 (∇κf)(∇κg)+gΔf,

for any two functionsfandg. Now choose forfthe-th descending multipole tensor
Xμ 1 μ 2 ···μand assume that the scalargdepends onr=|r|only. SinceΔX...=0,
one obtains


Δ(g(r)Xμ 1 μ 2 ···μ)=Xμ 1 μ 2 ···μΔg+ 2 g′r−^1 rκ∇κXμ 1 μ 2 ···μ.
Free download pdf