Tensors for Physics

(Marcin) #1

410 Appendix: Exercises...


For circular polarized light with its electric field vector parallel toe=ex±iey,
the vector polarization is


〈L〉=±ez.

Application ofLνonLμΦ 1 =−iεμκλφκeλyieldsLνLμΦ 1 =−εναβ̂rα∂∂̂rβεμκλφκ


eλ=−εναβεμβ λφαeλ=δνμφλeλ−φμeν. Now multiplication byΦ 1 ∗and subsequent
integration overd^2 ̂rleads to


〈LνLμ〉=δνμe∗λeλ−eμ∗eν.

Notice thateλ∗eλ=1 and〈LνLν〉=2, in accord with(+ 1 )for=1. The
symmetric traceless part of〈LνLμ〉is the tensor polarization


〈LμLν〉=−eμ∗eν.

Thus for the linear polarizationeν=exν, and for the circular polarization one finds


〈LμLν〉=−exμeνx,

and


〈LμLν〉=−

1

2

(

exμexν+eyμeyν

)

=

1

2

ezμezν.

Exercises Chapter 13


13.1 Verify the Normalization for the Spin 1 Matrices(p.241)
Compute explicitly sx^2 +s^2 y+sz^2 for the spin matrices(13.6)in order to check the
normalization relation(13.4),viz.s·s=s(s+ 1 ) 1.


Spin 1.Matrix multiplication yields


sxsx=

1

2



101

020

101


⎠, sysy=^1
2



10 − 1

020

−10 1


⎠, szsz=



100

000

001


⎠, (A.14)

thus


sx^2 +sy^2 +sz^2 = 2



100

010

001


⎠, (A.15)

in accord with (13.4), fors=1.

Free download pdf