414 Appendix: Exercises...
SinceΦμνa =Aaaμν−
√
6 Baaμλaλν+Caaμνaλκaλκ,
∂Φ
∂aμν
=Aaμν−
√
6 Baμλaλν +Caμνaλκaλκ
is obtained, where
A=Aa−c^21 , B=Ba+ 3 c 1 c 2 , C=Ca− 2 c^21 ,
in accord with (15.53).
15.4 Flexo-electric Coefficients(p.297)
Start from equation(15.56)for the vector dμ,use aμν=
√
3
2 aeqnμnνand Pμ=
Prefdμin order to derive an expression of the form(15.57)and express the flexo-
electric coefficients e 1 ande 3 toc 1 ,c 2 and aeq=
√
5 S,where S is the Maier-Saupe
order parameter. Furthermore, compute the contribution to the electric polarization
which is proportional to the spatial derivative of aeq=
√
5 S.
Hint: treat the components ofPparallel and perpendicular tonseparately.
With the recommended ansatz foraμν, the right hand side of (15.56) becomes
c 1 ∇νaνμ=
√
3
2
c 1
[
aeqnμ∇νnν+aeqnν∇νnμ+nμnν∇νaeq
]
.
Likewise, the left hand side of (15.56) becomes
(
δμν+
√
3
2
c 2 aeqnμnν
)
dν=
(
1 +
√
2
3
c 2 aeq
)
dμ‖+
(
1 −
√
1
6
c 2 aeq
)
d⊥μ,
wheredμ‖=nμnνdνanddμ⊥=dμ−dμ‖are the components parallel and perpendic-
ular to the director. The solution of (15.56)fordis
dμ‖=
(
1 +
√
2
3
c 2 aeq
)− 1 √
3
2
c 1 nμ
(
aeq∇νnν+
2
3
nν∇νaeq
)
,
dμ⊥=
(
1 −
√
1
6
c 2 aeq
)− 1 √
3
2
c 1
(
aeqnν∇νnμ−
1
3
∇μ⊥aeq
)
.
The resulting flexo-electric coefficients are