Tensors for Physics

(Marcin) #1

5.7 Volume Conserving Affine Transformation 73


5.7 Volume Conserving Affine Transformation


5.7.1 Mapping of a Sphere onto an Ellipsoid


LetrandrAbe the coordinates in the original and in an affine transformed space.
The components are linked by


rμArμA=rμAμνrν, rAμ=A^1 μν/^2 rν. (5.53)

When the tensorAμνhas positive eigenvalues, the relations (5.53) describe a mapping
of a sphererA·rA=const. onto an ellipsoid inr-space. The affine transformation


matrix, as considered in Sect.2.3.2,isA
1 / 2
μν. The volume of the ellipsoid is equal to
that of the sphere provided that the product of the eigenvaluesAi,i= 1 , 2 ,3ofAμν
are equal to 1, viz.,
A 1 A 2 A 3 = 1. (5.54)


For a uniaxial ellipsoid two of the eigenvalues are equal, e.g.A 2 =A 3.


5.7.2 Uniaxial Ellipsoid


Letube a unit vector parallel to the symmetry axis of a uniaxial ellipsoid. In this case,
one can make the ansatzAμν∼δμν+Auμuνwhere thenon-sphericity parameter
Ais bounded according to− 3 / 2 <A<3. The volume conserving condition (5.54)
implies


Aμν=

[(

1 −

1

3

A

) 2 (

1 +

2

3

A

)]− 1 / (^3) (
δμν+Auμuν


)

. (5.55)

The equation (5.54) withrμArμA=rA^2 =const. describes an ellipsoid with the semi-


axesa=[( 1 −^13 A)( 1 +^23 A)−^1 ]^1 /^3 rAandb=c=[( 1 +^23 A)( 1 −^13 A)−^1 ]^1 /^6 rA.
Thus the axes ratio is


Q=

a
b

=

[(

1 −

1

3

A

)(

1 +

2

3

A

)− 1 ]^1 /^2

, (5.56)

andAis related toQby


A= 3

1 −Q^2

1 + 2 Q^2

. (5.57)
Free download pdf