Science - USA (2021-11-12)

(Antfer) #1

that Integrator binding is inconsistent with
EC formation (fig. S8). Integrator excludes
PAF binding because the N-terminal region of
INTS1 clashes with PAF subunits PAF1 and
LEO1 (fig. S8A) and INTS2 clashes with the
PAF subunit CTR9 (fig. S8B). Integrator also
excludes SPT6 because INTS11 and INTS6
clash with the SPT6 core and tandem SH2
(tSH2) domain, respectively (fig. S8C). Thus,
Integrator interferes with EC
formation not
only by counteracting phosphorylation but
also by steric hinderance.
Finally, our structure provides clues as to
how Integrator may facilitate Pol II termi-
nation. Termination requires the release of
nucleic acids from the Pol II active center cleft,
particularly release of the DNA-RNA hybrid
that is encircled within Pol II by the closed
clamp ( 38 ) and by the DNA clamp of DSIF
that consists of the SPT5 NGN domain and
SPT4 ( 23 ). Our structure shows that the Pol II
clamp is still closed but not restricted by Inte-


grator and that the DSIF DNA clamp is open
because the NGN domain and SPT4 are mo-
bile (Fig. 1C). DSIF also forms a clamp on ex-
iting RNA with its SPT5 KOWx-4 domain ( 23 ),
which is bound by the INTS11 endonuclease.
We speculate that RNA cleavage facilitates
opening of the RNA clamp of DSIF and ex-
poses an uncapped RNA 5′end that is a sub-
strate for the XRN2 nuclease that can cause
termination ( 39 ).
In conclusion, our PEC-Integrator-PP2A struc-
ture represents a pretermination complex
and provides insights into the mechanisms of
Integrator-mediated transcription regulation
(fig. S11D). Integrator recognizes the PEC by
forming contacts with Pol II, DSIF, and NELF;
positions the PP2A phosphatase to counteract
PEC phosphorylation; sterically interferes with
the association of the positive elongation fac-
tors SPT6 and PAF; and positions its cleavage
module to cleave nascent RNA ~20 nt from
the Pol II active site. Finally, Integrator induces

a PEC conformation that is consistent with the
release of nucleic acids and transcription ter-
mination. These mechanisms likely underlie
not only transcription attenuation in the 5′re-
gion of protein-coding genes but also termina-
tion at the 3′end of noncoding transcription
units, including enhancers.

REFERENCESANDNOTES


  1. D. Baillatet al.,Cell 123 , 265–276 (2005).

  2. F. Lai, A. Gardini, A. Zhang, R. Shiekhattar,Nature 525 ,
    399 – 403 (2015).

  3. M. P. Rubtsovaet al.,Sci. Rep. 9 , 1701 (2019).

  4. J. Barraet al.,Sci. Adv. 6 , eaaz9072 (2020).

  5. J. Yamamotoet al.,Nat. Commun. 5 , 4263 (2014).

  6. A. Gardiniet al.,Mol. Cell 56 , 128–139 (2014).

  7. B. Stadelmayeret al.,Nat. Commun. 5 , 5531 (2014).

  8. J. R. Skaaret al.,Cell Res. 25 , 288–305 (2015).

  9. N.D.Elrodet al.,Mol. Cell 76 , 738–752.e7 (2019).

  10. D.C.Tatomeret al.,Genes Dev. 33 , 1525– 1538
    (2019).

  11. F. Beckedorffet al.,Cell Rep. 32 , 107917 (2020).

  12. S. Lykke-Andersenet al.,Mol. Cell 81 , 514–529.e6
    (2021).

  13. K. Kamieniarz-Gdula, N. J. Proudfoot,Trends Genet. 35 ,
    553 – 564 (2019).

  14. K. L. Huanget al.,Mol. Cell 80 , 345–358.e9 (2020).

  15. H. Zhenget al.,Science 370 , eabb5872 (2020).

  16. S. J. Vervoortet al.,Cell 184 , 3143–3162.e32 (2021).

  17. J. Chenet al.,RNA 18 , 2148–2156 (2012).

  18. T. R. Albrechtet al.,Nucleic Acids Res. 46 , 4241– 4255
    (2018).

  19. M. M. Pfleiderer, W. P. Galej,Mol. Cell 81 , 1246–1259.e8
    (2021).

  20. Z. Dominski, X. C. Yang, W. F. Marzluff,Cell 123 , 37– 48
    (2005).

  21. K. Sabathet al.,Nat. Commun. 11 , 3422 (2020).

  22. S. M. Vos, L. Farnung, H. Urlaub, P. Cramer,Nature 560 ,
    601 – 606 (2018).

  23. C. Bernecky, J. M. Plitzko, P. Cramer,Nat. Struct. Mol. Biol. 24 ,
    809 – 815 (2017).

  24. P. Cramer, D. A. Bushnell, R. D. Kornberg,Science 292 ,
    1863 – 1876 (2001).

  25. J. Chen, B. Waltenspiel, W. D. Warren, E. J. Wagner,
    J. Biol. Chem. 288 , 4867–4877 (2013).

  26. Y. Sunet al.,Science 367 , 700–703 (2020).

  27. S. Gresselet al.,eLife 6 , e29736 (2017).

  28. P. Uguen, S. Murphy,EMBO J. 22 , 4544–4554 (2003).

  29. J. Chen, E. J. Wagner,Biochem. Soc. Trans. 38 , 1082– 1087
    (2010).

  30. N. Hernandez,EMBO J. 4 , 1827–1837 (1985).

  31. J. Liet al.,J. Biol. Chem. 296 , 100112 (2021).

  32. Y. Jiaet al.,Cell Discov. 7 , 66 (2021).

  33. S. Egloffet al.,Science 318 , 1777–1779 (2007).

  34. S. Egloffet al.,J. Biol. Chem. 285 , 20564–20569 (2010).

  35. N. Shahet al.,Mol. Cell 69 , 48–61.e6 (2018).

  36. S. Egloff, J. Zaborowska, C. Laitem, T. Kiss, S. Murphy,
    Mol. Cell 45 , 111–122 (2012).

  37. S. M. Voset al.,Nature 560 , 607–612 (2018).

  38. A. L. Gnatt, P. Cramer, J. Fu, D. A. Bushnell, R. D. Kornberg,
    Science 292 , 1876–1882 (2001).

  39. N. J. Proudfoot,Science 352 , aad9926 (2016).

  40. E. Jurruset al.,Protein Sci. 27 , 112–128 (2018).


ACKNOWLEDGMENTS
We thank U. Steuerwald for support at the microscope and for
maintaining the EM facility, T. Schulz for maintaining cells
and thymus, P. Rus and U. Neef for running the insect cell
facility, and F. Wagner for providing the continuous carbon used
in cryo-grid preparation.Funding:P.C. was supported by the
Deutsche Forschungsgemeinschaft (EXC 2067/1-390729940)
and the European Research Council (Advanced Investigator
Grant CHROMATRANS 882357). H.U. was supported by the
Deutsche Forschungsgemeinschaft (SFB860).Author
contributions:I.F. designed and performed all experiments and
data evaluation except as follows. Y.C. prepared PP2A and
assisted with structural modeling. C.D. assisted with cryo-EM

886 12 NOVEMBER 2021•VOL 374 ISSUE 6569 science.orgSCIENCE


Linker Proximal CTD Distal CTD with crosslinked Lys residues

RPB1

Distal CTD Lys crosslink sites

PP2A-C active site

Open space to
accommodate CTD

Downstream
DNA

CTD peptide

A

B

C INTS7 D

INTS4

INTS4

INTS 2

INTS6

INTS7

S5
P6

S7 Y1

S2

P3
T4

S5
P6
S7

Y1 S2

R73

R106

K105
P3

INTS7

INTS4

3

28

53

-5.0 kT/e 5.0

D538
E536

D533

D540

D541

INTS 2

INTS 2

K K K K K K K K
400 Å 1400 Å

180°

M1484

M1484

Fig. 4. Integrator-CTD interaction and Pol II dephosphorylation.(A) Schematic showing organization of
the Pol II subunit RPB1. A linker connects the structured region of RPB1 to the CTD, which consists of a
proximal part and a distal part that contains lysine residues (red). The length of a fully extended linker
and CTD are indicated. (B) Location of lysine residues that cross-linked to the distal CTD within an open
space formed between Pol II and Integrator (black outline). (C) Two CTD repeats are bound to the open space
in (B), interacting with the Integrator surface that is colored according to electrostatic surface potential ( 40 ).
Blue and red showing positively and negatively charged areas, respectively. (D) Interactions of the two CTD
repeats with INTS2, INTS4, and INTS7. The observed cryo-EM density is shown as a purple semitransparent
surface. Charged residues in the vicinity of the CTD are shown as sticks.


RESEARCH | REPORTS

Free download pdf