Science - USA (2021-11-12)

(Antfer) #1

of learning and memory, a deeper knowl-
edge of the functional role of myelin plasticity
may unlock alternative therapeutic approaches
for neurodegenerative diseases and neuro-
psychiatric disorders. Although little is known
about the role of oligodendrocytes and myelin
in these diseases, the development of new
methods ( 98 , 100 ) to determine their contri-
butions could lead to a new understanding of
these conditions. The advancement of remye-
lination strategies promoting OPC differen-
tiation into new myelinating oligodendrocytes
may offer avenues to remediate cognitive
deficits (including memory) or aberrant func-
tional engagement of brain circuits in psychiat-
ric diseases. These possibilities call for further
investigation of the functional role of myelin
plasticity.


REFERENCESANDNOTES



  1. K.-A. Nave, Myelination and support of axonal integrity by
    glia.Nature 468 , 244–252 (2010). doi:10.1038/nature09614;
    pmid: 21068833

  2. S. Mooreet al., A role of oligodendrocytes in information
    processing.Nat. Commun. 11 , 5497 (2020). doi:10.1038/
    s41467-020-19152-7; pmid: 33127910

  3. R. J. M. Franklin, C. Ffrench-Constant, Regenerating CNS
    myelin - from mechanisms to experimental medicines.
    Nat. Rev. Neurosci. 18 , 753–769 (2017). doi:10.1038/
    nrn.2017.136; pmid: 29142295

  4. O. de Faria Jr., E. A. C. Pama, K. Evans, A. Luzhynskaya,
    R. T. Káradóttir, Neuroglial interactions underpinning
    myelin plasticity.Dev. Neurobiol. 78 , 93–107 (2018).
    doi:10.1002/dneu.22539

  5. S. E. Pease-Raissi, J. R. Chan, Building a (w)rapport between
    neurons and oligodendroglia: Reciprocal interactions
    underlying adaptive myelination.Neuron 109 , 1258– 1273
    (2021). doi:10.1016/j.neuron.2021.02.003; pmid: 33621477

  6. G. Ziegleret al., Compulsivity and impulsivity traits linked
    to attenuated developmental frontostriatal myelination
    trajectories.Nat. Neurosci. 22 , 992–999 (2019).
    doi:10.1038/s41593-019-0394-3; pmid: 31086316

  7. Z. Nagy, H. Westerberg, T. Klingberg, Maturation of white
    matter is associated with the development of cognitive
    functions during childhood.J. Cogn. Neurosci. 16 , 1227– 1233
    (2004). doi:10.1162/0898929041920441; pmid: 15453975

  8. B. D. Peterset al., Age-related differences in white matter tract
    microstructure are associated with cognitive performance from
    childhood to adulthood.Biol. Psychiatry 75 , 248–256 (2014).
    doi:10.1016/j.biopsych.2013.05.020; pmid: 23830668

  9. F. Darki, T. Klingberg, The role of fronto-parietal and fronto-
    striatal networks in the development of working memory:
    A longitudinal study.Cereb. Cortex 25 , 1587–1595 (2015).
    doi:10.1093/cercor/bht352; pmid: 24414278

  10. P. Alcami, A. El Hady, Axonal Computations.Front. Cell.
    Neurosci. 13 , 413 (2019). doi:10.3389/fncel.2019.00413;
    pmid: 31619963

  11. Z. Chorghay, R. T. Káradóttir, E. S. Ruthazer, White Matter
    Plasticity Keeps the Brain in Tune: Axons Conduct While Glia
    Wrap.Front. Cell. Neurosci. 12 , 428 (2018). doi:10.3389/
    fncel.2018.00428; pmid: 30519159

  12. C. C. H. Cohenet al., Saltatory Conduction along Myelinated
    Axons Involves a Periaxonal Nanocircuit.Cell 180 , 311–322.
    e15 (2020). doi:10.1016/j.cell.2019.11.039; pmid: 31883793

  13. W. A. Rushton, A theory of the effects of fibre size in
    medullated nerve.J. Physiol. 115 , 101–122 (1951).
    doi:10.1113/jphysiol.1951.sp004655; pmid: 14889433

  14. S. G. Waxman, M. V. Bennett, Relative conduction velocities
    of small myelinated and non-myelinated fibres in the central
    nervous system.Nat. New Biol. 238 , 217–219 (1972).
    doi:10.1038/newbio238217a0; pmid: 4506206

  15. M. H. Brill, S. G. Waxman, J. W. Moore, R. W. Joyner,
    Conduction velocity and spike configuration in myelinated
    fibres: Computed dependence on internode distance.
    J. Neurol. Neurosurg. Psychiatry 40 , 769–774 (1977).
    doi:10.1136/jnnp.40.8.769; pmid: 925697
    16. I. L. Arancibia-Cárcamoet al., Node of Ranvier length as a
    potential regulator of myelinated axon conduction speed.
    eLife 6 , e23329 (2017). doi:10.7554/eLife.23329;
    pmid: 28130923
    17. G. E. Baker, M. P. Stryker, Retinofugal fibres change
    conduction velocity and diameter between the optic nerve
    and tract in ferrets.Nature 344 , 342–345 (1990).
    doi:10.1038/344342a0; pmid: 2314474
    18. R. R. Sturrock, Myelination of the mouse corpus callosum.
    Neuropathol. Appl. Neurobiol. 6 , 415–420 (1980).
    doi:10.1111/j.1365-2990.1980.tb00219.x; pmid: 7453945
    19. G. S. Tomassyet al., Distinct profiles of myelin distribution
    along single axons of pyramidal neurons in the neocortex.
    Science 344 , 319–324 (2014). doi:10.1126/science.1249766;
    pmid: 24744380
    20. M. C. Fordet al., Tuning of Ranvier node and internode
    properties in myelinated axons to adjust action potential
    timing.Nat. Commun. 6 , 8073 (2015). doi:10.1038/
    ncomms9073; pmid: 26305015
    21. C. Stadelmann, S. Timmler, A. Barrantes-Freer, M. Simons,
    Myelin in the Central Nervous System: Structure, Function,
    and Pathology.Physiol. Rev. 99 , 1381–1431 (2019).
    doi:10.1152/physrev.00031.2018; pmid: 31066630
    22. V. A. Larsonet al., Oligodendrocytes control potassium
    accumulation in white matter and seizure susceptibility.eLife 7 ,
    e34829 (2018). doi:10.7554/eLife.34829; pmid: 29596047
    23. Y. Yamazakiet al., Oligodendrocytes: Facilitating axonal
    conduction by more than myelination.Neuroscientist 16 ,
    11 – 18 (2010). doi:10.1177/1073858409334425;
    pmid: 19429890
    24. A. S. Saabet al., Oligodendroglial NMDA Receptors Regulate
    Glucose Import and Axonal Energy Metabolism.Neuron 91 ,
    119 – 132 (2016). doi:10.1016/j.neuron.2016.05.016;
    pmid: 27292539
    25. L. Schirmeret al., Oligodendrocyte-encoded Kir4.1 function is
    required for axonal integrity.eLife 7 , e36428 (2018).
    doi:10.7554/eLife.36428; pmid: 30204081
    26. M. Salami, C. Itami, T. Tsumoto, F. Kimura, Change of
    conduction velocity by regional myelination yields constant
    latency irrespective of distance between thalamus and
    cortex.Proc. Natl. Acad. Sci. U.S.A. 100 , 6174–6179 (2003).
    doi:10.1073/pnas.0937380100; pmid: 12719546
    27. E. J. Lang, J. Rosenbluth, Role of myelination in the
    development of a uniform olivocerebellar conduction time.
    J. Neurophysiol. 89 , 2259–2270 (2003). doi:10.1152/
    jn.00922.2002; pmid: 12611949
    28. A. H. Seidl, E. W. Rubel, Systematic and differential
    myelination of axon collaterals in the mammalian auditory
    brainstem.Glia 64 , 487–494 (2016). doi:10.1002/glia.22941;
    pmid: 26556176
    29. N. Benamer, M. Vidal, M. Balia, M. C. Angulo, Myelination of
    parvalbumin interneurons shapes the function of cortical
    sensory inhibitory circuits.Nat. Commun. 11 , 5151 (2020).
    doi:10.1038/s41467-020-18984-7; pmid: 33051462
    30. Y. Dan, M. M. Poo, Spike timing-dependent plasticity of
    neural circuits.Neuron 44 , 23–30 (2004). doi:10.1016/
    j.neuron.2004.09.007; pmid: 15450157
    31. S. J. Martin, P. D. Grimwood, R. G. Morris, Synaptic plasticity
    and memory: An evaluation of the hypothesis.Annu. Rev.
    Neurosci. 23 , 649–711 (2000). doi:10.1146/annurev.
    neuro.23.1.649; pmid: 10845078
    32. S. Pajevic, P. J. Basser, R. D. Fields, Role of myelin plasticity
    in oscillations and synchrony of neuronal activity.
    Neuroscience 276 , 135–147 (2014). doi:10.1016/
    j.neuroscience.2013.11.007; pmid: 24291730
    33. R. Nooriet al., Activity-dependent myelination: A glial
    mechanism of oscillatory self-organization in large-scale
    brain networks.Proc. Natl. Acad. Sci. U.S.A. 117 , 13227– 13237
    (2020). doi:10.1073/pnas.1916646117; pmid: 32482855
    34. M. R. Dawson, A. Polito, J. M. Levine, R. Reynolds,
    NG2-expressing glial progenitor cells: An abundant and
    widespread population of cycling cells in the adult rat CNS.
    Mol. Cell. Neurosci. 24 , 476–488 (2003). doi:10.1016/
    S1044-7431(03)00210-0; pmid: 14572468
    35. E. G. Hughes, S. H. Kang, M. Fukaya, D. E. Bergles,
    Oligodendrocyte progenitors balance growth with self-
    repulsion to achieve homeostasis in the adult brain.
    Nat. Neurosci. 16 , 668–676 (2013). doi:10.1038/nn.3390;
    pmid: 23624515
    36. C. Demerenset al., Induction of myelination in the central
    nervous system by electrical activity.Proc. Natl. Acad. Sci.
    U.S.A. 93 , 9887–9892 (1996). doi:10.1073/pnas.93.18.9887;
    pmid: 8790426
    37. E. M. Gibsonet al., Neuronal activity promotes
    oligodendrogenesis and adaptive myelination in the
    mammalian brain.Science 344 , 1252304 (2014).
    doi:10.1126/science.1252304; pmid: 24727982
    38. S. Mitewet al., Pharmacogenetic stimulation of neuronal
    activity increases myelination in an axon-specific manner.
    Nat. Commun. 9 , 306 (2018). doi:10.1038/
    s41467-017-02719-2; pmid: 29358753
    39. I. Lundgaardet al., Neuregulin and BDNF induce a switch to
    NMDA receptor-dependent myelination by oligodendrocytes.
    PLOS Biol. 11 , e1001743 (2013). doi:10.1371/journal.
    pbio.1001743; pmid: 24391468
    40. J. Buchananet al., Oligodendrocyte precursor cells prune
    axons in the mouse neocortex. bioRxiv [preprint].
    29 May 2021. pmid: 446047
    41. I. A. McKenzieet al., Motor skill learning requires active
    central myelination.Science 346 , 318–322 (2014).
    doi:10.1126/science.1254960; pmid: 25324381
    42. L. Xiaoet al., Rapid production of new oligodendrocytes is
    required in the earliest stages of motor-skill learning.
    Nat. Neurosci. 19 , 1210–1217 (2016). doi:10.1038/nn.4351;
    pmid: 27455109
    43. S. A. Freemanet al., Acceleration of conduction velocity
    linked to clustering of nodal components precedes
    myelination.Proc. Natl. Acad. Sci. U.S.A. 112 , E321–E328
    (2015). doi:10.1073/pnas.1419099112; pmid: 25561543
    44. R. A. Hill, A. M. Li, J. Grutzendler, Lifelong cortical myelin
    plasticity and age-related degeneration in the live mammalian
    brain.Nat. Neurosci. 21 , 683–695 (2018). doi:10.1038/
    s41593-018-0120-6; pmid: 29556031
    45. E. G. Hughes, J. L. Orthmann-Murphy, A. J. Langseth,
    D. E. Bergles, Myelin remodeling through experience-
    dependent oligodendrogenesis in the adult somatosensory
    cortex.Nat. Neurosci. 21 , 696–706 (2018). doi:10.1038/
    s41593-018-0121-5; pmid: 29556025
    46. S. M. Yang, K. Michel, V. Jokhi, E. Nedivi, P. Arlotta, Neuron
    class–specific responses govern adaptive remodeling of
    myelination in the neocortex.Science 370 , eabd2109
    (2020). doi:10.1126/science.abd2109
    47. D. Sakryet al., Oligodendrocyte precursor cells modulate
    the neuronal network by activity-dependent ectodomain
    cleavage of glial NG2.PLOS Biol. 12 , e1001993 (2014).
    doi:10.1371/journal.pbio.1001993; pmid: 25387269
    48. Y. Yamazakiet al., Short- and long-term functional plasticity
    of white matter induced by oligodendrocyte depolarization in
    the hippocampus.Glia 62 , 1299–1312 (2014). doi:10.1002/
    glia.22681; pmid: 24756966
    49. B. Stevens, S. Tanner, R. D. Fields, Control of myelination by
    specific patterns of neural impulses.J. Neurosci. 18 ,
    9303 – 9311 (1998). doi:10.1523/JNEUROSCI.18-22-
    09303.1998; pmid: 9801369
    50. H. Okano, T. Hirano, E. Balaban, Learning and memory.
    Proc. Natl. Acad. Sci. U.S.A. 97 , 12403–12404 (2000).
    doi:10.1073/pnas.210381897; pmid: 11035781
    51. J. Scholz, M. C. Klein, T. E. Behrens, H. Johansen-Berg,
    Training induces changes in white-matter architecture.
    Nat. Neurosci. 12 , 1370–1371 (2009). doi:10.1038/nn.2412;
    pmid: 19820707
    52. K. B. Walhovd, H. Johansen-Berg, R. T. Káradóttir, Unraveling
    the secrets of white matter—Bridging the gap between
    cellular, animal and human imaging studies.Neuroscience
    276 ,2–13 (2014). doi:10.1016/j.neuroscience.2014.06.058;
    pmid: 25003711
    53. C. Sampaio-Baptistaet al., Motor skill learning induces
    changes in white matter microstructure and myelination.
    J. Neurosci. 33 , 19499–19503 (2013). doi:10.1523/
    JNEUROSCI.3048-13.2013; pmid: 24336716
    54. N. E. Ziv, E. Ahissar, New tricks and old spines.Nature 462 ,
    859 – 861 (2009). doi:10.1038/462859a; pmid: 20016588
    55. P. E. Steadmanet al., Disruption of Oligodendrogenesis
    Impairs Memory Consolidation in Adult Mice.Neuron
    105 , 150–164.e6 (2020). doi:10.1016/j.neuron.2019.10.013;
    pmid: 31753579
    56. S. Pan, S. R. Mayoral, H. S. Choi, J. R. Chan, M. A. Kheirbek,
    Preservation of a remote fear memory requires new
    myelin formation.Nat. Neurosci. 23 , 487–499 (2020).
    doi:10.1038/s41593-019-0582-1; pmid: 32042175
    57. F. Wanget al., Myelin degeneration and diminished myelin
    renewal contribute to age-related deficits in memory.
    Nat. Neurosci. 23 , 481–486 (2020). doi:10.1038/
    s41593-020-0588-8; pmid: 32042174
    58. C. M. Bacmeisteret al., Motor learning promotes
    remyelination via new and surviving oligodendrocytes.


Bonettoet al.,Science 374 , eaba6905 (2021) 12 November 2021 7of8


RESEARCH | REVIEW

Free download pdf