of learning and memory, a deeper knowl-
edge of the functional role of myelin plasticity
may unlock alternative therapeutic approaches
for neurodegenerative diseases and neuro-
psychiatric disorders. Although little is known
about the role of oligodendrocytes and myelin
in these diseases, the development of new
methods ( 98 , 100 ) to determine their contri-
butions could lead to a new understanding of
these conditions. The advancement of remye-
lination strategies promoting OPC differen-
tiation into new myelinating oligodendrocytes
may offer avenues to remediate cognitive
deficits (including memory) or aberrant func-
tional engagement of brain circuits in psychiat-
ric diseases. These possibilities call for further
investigation of the functional role of myelin
plasticity.
REFERENCESANDNOTES
- K.-A. Nave, Myelination and support of axonal integrity by
glia.Nature 468 , 244–252 (2010). doi:10.1038/nature09614;
pmid: 21068833 - S. Mooreet al., A role of oligodendrocytes in information
processing.Nat. Commun. 11 , 5497 (2020). doi:10.1038/
s41467-020-19152-7; pmid: 33127910 - R. J. M. Franklin, C. Ffrench-Constant, Regenerating CNS
myelin - from mechanisms to experimental medicines.
Nat. Rev. Neurosci. 18 , 753–769 (2017). doi:10.1038/
nrn.2017.136; pmid: 29142295 - O. de Faria Jr., E. A. C. Pama, K. Evans, A. Luzhynskaya,
R. T. Káradóttir, Neuroglial interactions underpinning
myelin plasticity.Dev. Neurobiol. 78 , 93–107 (2018).
doi:10.1002/dneu.22539 - S. E. Pease-Raissi, J. R. Chan, Building a (w)rapport between
neurons and oligodendroglia: Reciprocal interactions
underlying adaptive myelination.Neuron 109 , 1258– 1273
(2021). doi:10.1016/j.neuron.2021.02.003; pmid: 33621477 - G. Ziegleret al., Compulsivity and impulsivity traits linked
to attenuated developmental frontostriatal myelination
trajectories.Nat. Neurosci. 22 , 992–999 (2019).
doi:10.1038/s41593-019-0394-3; pmid: 31086316 - Z. Nagy, H. Westerberg, T. Klingberg, Maturation of white
matter is associated with the development of cognitive
functions during childhood.J. Cogn. Neurosci. 16 , 1227– 1233
(2004). doi:10.1162/0898929041920441; pmid: 15453975 - B. D. Peterset al., Age-related differences in white matter tract
microstructure are associated with cognitive performance from
childhood to adulthood.Biol. Psychiatry 75 , 248–256 (2014).
doi:10.1016/j.biopsych.2013.05.020; pmid: 23830668 - F. Darki, T. Klingberg, The role of fronto-parietal and fronto-
striatal networks in the development of working memory:
A longitudinal study.Cereb. Cortex 25 , 1587–1595 (2015).
doi:10.1093/cercor/bht352; pmid: 24414278 - P. Alcami, A. El Hady, Axonal Computations.Front. Cell.
Neurosci. 13 , 413 (2019). doi:10.3389/fncel.2019.00413;
pmid: 31619963 - Z. Chorghay, R. T. Káradóttir, E. S. Ruthazer, White Matter
Plasticity Keeps the Brain in Tune: Axons Conduct While Glia
Wrap.Front. Cell. Neurosci. 12 , 428 (2018). doi:10.3389/
fncel.2018.00428; pmid: 30519159 - C. C. H. Cohenet al., Saltatory Conduction along Myelinated
Axons Involves a Periaxonal Nanocircuit.Cell 180 , 311–322.
e15 (2020). doi:10.1016/j.cell.2019.11.039; pmid: 31883793 - W. A. Rushton, A theory of the effects of fibre size in
medullated nerve.J. Physiol. 115 , 101–122 (1951).
doi:10.1113/jphysiol.1951.sp004655; pmid: 14889433 - S. G. Waxman, M. V. Bennett, Relative conduction velocities
of small myelinated and non-myelinated fibres in the central
nervous system.Nat. New Biol. 238 , 217–219 (1972).
doi:10.1038/newbio238217a0; pmid: 4506206 - M. H. Brill, S. G. Waxman, J. W. Moore, R. W. Joyner,
Conduction velocity and spike configuration in myelinated
fibres: Computed dependence on internode distance.
J. Neurol. Neurosurg. Psychiatry 40 , 769–774 (1977).
doi:10.1136/jnnp.40.8.769; pmid: 925697
16. I. L. Arancibia-Cárcamoet al., Node of Ranvier length as a
potential regulator of myelinated axon conduction speed.
eLife 6 , e23329 (2017). doi:10.7554/eLife.23329;
pmid: 28130923
17. G. E. Baker, M. P. Stryker, Retinofugal fibres change
conduction velocity and diameter between the optic nerve
and tract in ferrets.Nature 344 , 342–345 (1990).
doi:10.1038/344342a0; pmid: 2314474
18. R. R. Sturrock, Myelination of the mouse corpus callosum.
Neuropathol. Appl. Neurobiol. 6 , 415–420 (1980).
doi:10.1111/j.1365-2990.1980.tb00219.x; pmid: 7453945
19. G. S. Tomassyet al., Distinct profiles of myelin distribution
along single axons of pyramidal neurons in the neocortex.
Science 344 , 319–324 (2014). doi:10.1126/science.1249766;
pmid: 24744380
20. M. C. Fordet al., Tuning of Ranvier node and internode
properties in myelinated axons to adjust action potential
timing.Nat. Commun. 6 , 8073 (2015). doi:10.1038/
ncomms9073; pmid: 26305015
21. C. Stadelmann, S. Timmler, A. Barrantes-Freer, M. Simons,
Myelin in the Central Nervous System: Structure, Function,
and Pathology.Physiol. Rev. 99 , 1381–1431 (2019).
doi:10.1152/physrev.00031.2018; pmid: 31066630
22. V. A. Larsonet al., Oligodendrocytes control potassium
accumulation in white matter and seizure susceptibility.eLife 7 ,
e34829 (2018). doi:10.7554/eLife.34829; pmid: 29596047
23. Y. Yamazakiet al., Oligodendrocytes: Facilitating axonal
conduction by more than myelination.Neuroscientist 16 ,
11 – 18 (2010). doi:10.1177/1073858409334425;
pmid: 19429890
24. A. S. Saabet al., Oligodendroglial NMDA Receptors Regulate
Glucose Import and Axonal Energy Metabolism.Neuron 91 ,
119 – 132 (2016). doi:10.1016/j.neuron.2016.05.016;
pmid: 27292539
25. L. Schirmeret al., Oligodendrocyte-encoded Kir4.1 function is
required for axonal integrity.eLife 7 , e36428 (2018).
doi:10.7554/eLife.36428; pmid: 30204081
26. M. Salami, C. Itami, T. Tsumoto, F. Kimura, Change of
conduction velocity by regional myelination yields constant
latency irrespective of distance between thalamus and
cortex.Proc. Natl. Acad. Sci. U.S.A. 100 , 6174–6179 (2003).
doi:10.1073/pnas.0937380100; pmid: 12719546
27. E. J. Lang, J. Rosenbluth, Role of myelination in the
development of a uniform olivocerebellar conduction time.
J. Neurophysiol. 89 , 2259–2270 (2003). doi:10.1152/
jn.00922.2002; pmid: 12611949
28. A. H. Seidl, E. W. Rubel, Systematic and differential
myelination of axon collaterals in the mammalian auditory
brainstem.Glia 64 , 487–494 (2016). doi:10.1002/glia.22941;
pmid: 26556176
29. N. Benamer, M. Vidal, M. Balia, M. C. Angulo, Myelination of
parvalbumin interneurons shapes the function of cortical
sensory inhibitory circuits.Nat. Commun. 11 , 5151 (2020).
doi:10.1038/s41467-020-18984-7; pmid: 33051462
30. Y. Dan, M. M. Poo, Spike timing-dependent plasticity of
neural circuits.Neuron 44 , 23–30 (2004). doi:10.1016/
j.neuron.2004.09.007; pmid: 15450157
31. S. J. Martin, P. D. Grimwood, R. G. Morris, Synaptic plasticity
and memory: An evaluation of the hypothesis.Annu. Rev.
Neurosci. 23 , 649–711 (2000). doi:10.1146/annurev.
neuro.23.1.649; pmid: 10845078
32. S. Pajevic, P. J. Basser, R. D. Fields, Role of myelin plasticity
in oscillations and synchrony of neuronal activity.
Neuroscience 276 , 135–147 (2014). doi:10.1016/
j.neuroscience.2013.11.007; pmid: 24291730
33. R. Nooriet al., Activity-dependent myelination: A glial
mechanism of oscillatory self-organization in large-scale
brain networks.Proc. Natl. Acad. Sci. U.S.A. 117 , 13227– 13237
(2020). doi:10.1073/pnas.1916646117; pmid: 32482855
34. M. R. Dawson, A. Polito, J. M. Levine, R. Reynolds,
NG2-expressing glial progenitor cells: An abundant and
widespread population of cycling cells in the adult rat CNS.
Mol. Cell. Neurosci. 24 , 476–488 (2003). doi:10.1016/
S1044-7431(03)00210-0; pmid: 14572468
35. E. G. Hughes, S. H. Kang, M. Fukaya, D. E. Bergles,
Oligodendrocyte progenitors balance growth with self-
repulsion to achieve homeostasis in the adult brain.
Nat. Neurosci. 16 , 668–676 (2013). doi:10.1038/nn.3390;
pmid: 23624515
36. C. Demerenset al., Induction of myelination in the central
nervous system by electrical activity.Proc. Natl. Acad. Sci.
U.S.A. 93 , 9887–9892 (1996). doi:10.1073/pnas.93.18.9887;
pmid: 8790426
37. E. M. Gibsonet al., Neuronal activity promotes
oligodendrogenesis and adaptive myelination in the
mammalian brain.Science 344 , 1252304 (2014).
doi:10.1126/science.1252304; pmid: 24727982
38. S. Mitewet al., Pharmacogenetic stimulation of neuronal
activity increases myelination in an axon-specific manner.
Nat. Commun. 9 , 306 (2018). doi:10.1038/
s41467-017-02719-2; pmid: 29358753
39. I. Lundgaardet al., Neuregulin and BDNF induce a switch to
NMDA receptor-dependent myelination by oligodendrocytes.
PLOS Biol. 11 , e1001743 (2013). doi:10.1371/journal.
pbio.1001743; pmid: 24391468
40. J. Buchananet al., Oligodendrocyte precursor cells prune
axons in the mouse neocortex. bioRxiv [preprint].
29 May 2021. pmid: 446047
41. I. A. McKenzieet al., Motor skill learning requires active
central myelination.Science 346 , 318–322 (2014).
doi:10.1126/science.1254960; pmid: 25324381
42. L. Xiaoet al., Rapid production of new oligodendrocytes is
required in the earliest stages of motor-skill learning.
Nat. Neurosci. 19 , 1210–1217 (2016). doi:10.1038/nn.4351;
pmid: 27455109
43. S. A. Freemanet al., Acceleration of conduction velocity
linked to clustering of nodal components precedes
myelination.Proc. Natl. Acad. Sci. U.S.A. 112 , E321–E328
(2015). doi:10.1073/pnas.1419099112; pmid: 25561543
44. R. A. Hill, A. M. Li, J. Grutzendler, Lifelong cortical myelin
plasticity and age-related degeneration in the live mammalian
brain.Nat. Neurosci. 21 , 683–695 (2018). doi:10.1038/
s41593-018-0120-6; pmid: 29556031
45. E. G. Hughes, J. L. Orthmann-Murphy, A. J. Langseth,
D. E. Bergles, Myelin remodeling through experience-
dependent oligodendrogenesis in the adult somatosensory
cortex.Nat. Neurosci. 21 , 696–706 (2018). doi:10.1038/
s41593-018-0121-5; pmid: 29556025
46. S. M. Yang, K. Michel, V. Jokhi, E. Nedivi, P. Arlotta, Neuron
class–specific responses govern adaptive remodeling of
myelination in the neocortex.Science 370 , eabd2109
(2020). doi:10.1126/science.abd2109
47. D. Sakryet al., Oligodendrocyte precursor cells modulate
the neuronal network by activity-dependent ectodomain
cleavage of glial NG2.PLOS Biol. 12 , e1001993 (2014).
doi:10.1371/journal.pbio.1001993; pmid: 25387269
48. Y. Yamazakiet al., Short- and long-term functional plasticity
of white matter induced by oligodendrocyte depolarization in
the hippocampus.Glia 62 , 1299–1312 (2014). doi:10.1002/
glia.22681; pmid: 24756966
49. B. Stevens, S. Tanner, R. D. Fields, Control of myelination by
specific patterns of neural impulses.J. Neurosci. 18 ,
9303 – 9311 (1998). doi:10.1523/JNEUROSCI.18-22-
09303.1998; pmid: 9801369
50. H. Okano, T. Hirano, E. Balaban, Learning and memory.
Proc. Natl. Acad. Sci. U.S.A. 97 , 12403–12404 (2000).
doi:10.1073/pnas.210381897; pmid: 11035781
51. J. Scholz, M. C. Klein, T. E. Behrens, H. Johansen-Berg,
Training induces changes in white-matter architecture.
Nat. Neurosci. 12 , 1370–1371 (2009). doi:10.1038/nn.2412;
pmid: 19820707
52. K. B. Walhovd, H. Johansen-Berg, R. T. Káradóttir, Unraveling
the secrets of white matter—Bridging the gap between
cellular, animal and human imaging studies.Neuroscience
276 ,2–13 (2014). doi:10.1016/j.neuroscience.2014.06.058;
pmid: 25003711
53. C. Sampaio-Baptistaet al., Motor skill learning induces
changes in white matter microstructure and myelination.
J. Neurosci. 33 , 19499–19503 (2013). doi:10.1523/
JNEUROSCI.3048-13.2013; pmid: 24336716
54. N. E. Ziv, E. Ahissar, New tricks and old spines.Nature 462 ,
859 – 861 (2009). doi:10.1038/462859a; pmid: 20016588
55. P. E. Steadmanet al., Disruption of Oligodendrogenesis
Impairs Memory Consolidation in Adult Mice.Neuron
105 , 150–164.e6 (2020). doi:10.1016/j.neuron.2019.10.013;
pmid: 31753579
56. S. Pan, S. R. Mayoral, H. S. Choi, J. R. Chan, M. A. Kheirbek,
Preservation of a remote fear memory requires new
myelin formation.Nat. Neurosci. 23 , 487–499 (2020).
doi:10.1038/s41593-019-0582-1; pmid: 32042175
57. F. Wanget al., Myelin degeneration and diminished myelin
renewal contribute to age-related deficits in memory.
Nat. Neurosci. 23 , 481–486 (2020). doi:10.1038/
s41593-020-0588-8; pmid: 32042174
58. C. M. Bacmeisteret al., Motor learning promotes
remyelination via new and surviving oligodendrocytes.
Bonettoet al.,Science 374 , eaba6905 (2021) 12 November 2021 7of8
RESEARCH | REVIEW