14—Complex Variables 368
whereCis a circle of radiusπnabout the origin. Ans:− 4 πin
14.25 Evaluate the residues of these functions at their singularities. a,b, andcare distinct. Six
answers: you should be able to do five of them in your head.
(a)
1
(z−a)(z−b)(z−c)
(b)
1
(z−a)(z−b)^2
(c)
1
(z−a)^3
14.26 Evaluate the residue at the origin for the function
1
z
ez+
(^1) z
The result will be an infinite series, though if you want to express the answer in terms of a standard
function you will have to hunt. Ans:I 0 (2) = 2. 2796 , a modified Bessel function.
14.27 Evaluate
∫∞
0 dz/(a
(^4) +x (^4) ), and to check, compare it to the result of Eq. (14.15).
14.28 Show that ∫∞
0
dx
cosbx
a^2 +x^2
=
π
2 a
e−ab (a, b >0)
14.29 Evaluate (areal) ∫
∞
−∞
dx
sin^2 ax
x^2
Ans:|a|π
14.30 Evaluate ∫∞
−∞
dx
sin^2 bx
x(a^2 +x^2 )
14.31 Evaluate the integral
∫∞
0 dx
√
x/(a+x)^2. Use the ideas of example 8, but without the logarithm.
(a > 0 ) Ans:π/ 2
√
a
14.32 Evaluate ∫∞
0
dx
lnx
a^2 +x^2
(What happens if you consider(lnx)^2 ?) Ans:(πlna)/ 2 a
14.33 Evaluate(λ >1)by contour integration
∫ 2 π
0
dθ
(
λ+ sinθ
) 2
Ans: 2 πλ/(λ^2 −1)^3 /^2
14.34 Evaluate ∫π
0