plt.grid(True)
plt.legend(loc= 0 )
plt.axis(‘tight’)
plt.xlabel(‘index’)
plt.ylabel(‘value’)
Figure    5-11.   Plot    with    two subplots
The    placing of  subplots    in  the a   matplotlib figure   object  is  accomplished    here    by  the
use    of  a   special coordinate  system. plt.subplot takes   as  arguments   three   integers    for
numrows,   numcols,    and fignum  (either separated   by  commas  or  not).   numrows specifies   the
number of  rows,   numcols the number  of  columns,    and fignum  the number  of  the sub-plot,
starting   with    1   and ending  with    numrows *   numcols.    For example,    a   figure  with    nine
equally    sized   subplots    would   have    numrows=3,  numcols=3,  and fignum=1,2,...,9.   The
lower-right    subplot would   have    the following   “coordinates”:  plt.subplot(3,  3,  9).
Sometimes, it  might   be  necessary   or  desired to  choose  two different   plot    types   to  visualize
such   data.   With    the subplot approach    you have    the freedom to  combine arbitrary   kinds   of
plots  that    matplotlib  offers.
[ 23 ]
Figure 5-12    combines    a   line/point  plot    with    a   bar chart:
In  [ 15 ]: plt.figure(figsize=( 9 ,     4 ))
plt.subplot( 121 )
plt.plot(y[:,    0 ],   lw=1.5, label=‘1st’)
plt.plot(y[:,    0 ],   ‘ro’)
plt.grid(True)
plt.legend(loc= 0 )
plt.axis(‘tight’)
plt.xlabel(‘index’)
plt.ylabel(‘value’)
plt.title(‘1st  Data    Set’)
plt.subplot( 122 )
plt.bar(np.arange(len(y)),  y[:,     1 ],   width=0.5,
color=‘g’,  label=‘2nd’)
plt.grid(True)
plt.legend(loc= 0 )
plt.axis(‘tight’)
plt.xlabel(‘index’)
plt.title(‘2nd  Data    Set’)