Python for Finance: Analyze Big Financial Data

(Elle) #1

Performance Comparison


multiprocessing


Dynamic Compiling


Introductory Example


Binomial Option Pricing


Static Compiling with Cython


Generation of Random Numbers on GPUs


Conclusions


Further Reading


9. Mathematical Tools


Approximation


Regression


Monomials as basis functions


Individual basis functions


Noisy data


Unsorted data


Multiple dimensions


Interpolation


Convex Optimization


Global Optimization


Local Optimization


Constrained Optimization


Integration


Numerical Integration


Integration by Simulation


Symbolic Computation


Basics


Equations


Integration


Differentiation


Conclusions


Further Reading


10. Stochastics


Random Numbers


Simulation


Random Variables


Stochastic Processes


Geometric Brownian motion


Square-root diffusion


Stochastic volatility


Jump diffusion

Free download pdf